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MPN patients with low mutant JAK2 allele burden show
late expansion restricted to erythroid and
megakaryocytic lineages
Ronny Nienhold,1 Peter Ashcroft,2 Jakub Zmajkovic,1 Shivam Rai,1 Tata Nageswara Rao,1 Beatrice Drexler,3 Sara C. Meyer,1,3
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Myeloproliferative neoplasms (MPNs) are clonal hematopoietic
stem cell (HSC) diseases characterized by increased proliferation
of erythroid, megakaryocytic, and/or myeloid lineages.1 The
JAK2-V617F mutation can be found in .95% of polycythemia
vera (PV) patients, and also in approximately one-half of patients
with essential thrombocythemia (ET) or primary myelofibrosis
(PMF).2-5 Somatic mutations in exon 12 of JAK2 are found in 3%
to 5% of PV patients.6 Quantification of the JAK2-mutant allele
burden, also called variant allele frequency (VAF), in DNA from

peripheral blood granulocytes is used to monitor the size of the
mutant clone. ET patients have lower JAK2 VAF than PMF or PV
patients.7 Interestingly, some MPN patients display very low
VAF, which calls into question why they develop MPNs if the
clone is apparently unable to expand. We therefore studied
MPN patients with JAK2 VAF #20%.

In our cohort of 205 patients with JAK2-V617F1 MPNs, we
identified 56 patients with a VAF #20% in purified granulocyte

LETTERS TO BLOOD blood® 26 NOVEMBER 2020 | VOLUME 136, NUMBER 22 2591

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/136/22/2591/1790714/bloodbld2019002943.pdf by R

adek Skoda on 27 N
ovem

ber 2020

https://doi.org/10.1182/blood.2020008367
https://crossmark.crossref.org/dialog/?doi=10.1182/blood.2019002943&domain=pdf&date_stamp=2020-11-26


DNA (supplemental Figure 1A, available on the BloodWeb site).
Survival of MPN patients with low JAK2-V617F VAF was not
significantly altered compared with other MPN patients (sup-
plemental Figure 1B-D). The contribution of the JAK2-mutant
clone to peripheral blood lineages was previously shown to be
highly variable between individual MPN patients,8,9 and low
VAF correlated with lineage-restricted clonal distribution.9 We
therefore determined the JAK2 VAF in platelets and reticulo-
cytes, representing the lineages most relevant to ET and PV,
respectively. The purification procedures are described in
supplemental Figures 2 and 3. Because platelets and reticulo-
cytes do not contain DNA, we established a quantitative poly-
merase chain reaction assay to measure JAK2-V617F in RNA
(supplemental Figure 2C).

RNA from purified platelets was available from 44 of 56 patients
(79%) with low JAK2-V617F VAF (supplemental Figure 4). One
patient (P021) simultaneously also carried a JAK2 exon 12
mutation and we included 2 additional patients with a JAK2
exon 12 mutation in our study. Most patients with ET and PMF,
as well as 15 of 17 patients with PV (88%), had higher JAK2 VAF
in platelets compared with granulocytes (Figure 1A). We were able
to obtain fresh blood and to purify reticulocytes by fluorescence-
activated cell sorting (FACS) from 22 of 46 patients (48%) with
available platelet RNA. All patients with PV and PMF and, sur-
prisingly, 8 of 11 patients with ET (72%) had higher JAK2 VAF in
reticulocytes comparedwith granulocytes (Figure 1B). This increase
in allele burden compared with granulocytes was restricted to
platelets and reticulocytes (Figure 1C). We can distinguish 4
patterns of lineage contribution of the JAK2-mutant clone
(Figure 1D): a “platelet-biased” pattern, with increased mutant
allele burden solely in platelets; a “red cell–biased” pattern,
with a selective increase in reticulocytes; a “platelet and red
cell–biased” pattern, with increase in both platelets and reticulo-
cytes; and a “persistently low” pattern, with very low allele burden
in granulocytes, platelets, and reticulocytes.

To define at which stages of the hematopoietic development
the expansion of the JAK2-mutant clone occurs, we determined
the JAK2 VAF by genotyping single myeloid and erythroid pro-
genitors (Figure 2A; supplemental Figure 5). As expected, the
derived VAF in granulocyte and granulocyte/monocyte colonies
(colony-forming unit granulocyte/granulocyte-macrophage
[CFU-G/GM]) was low and comparable with VAF in peripheral
blood granulocytes. Burst-forming unit–erythroid (BFU-E) colo-
nies also showed very low VAF, but, in most patients, VAF
substantially increased in peripheral blood reticulocytes, sug-
gesting that the expansion of the mutant clone occurs at late
stages of erythroid development. The late erythroid expansion
of the JAK2-mutant clone in PV patients could be favored by
low serum erythropoietin levels and hypersensitivity of JAK2-
V617F–expressing progenitors to erythropoietin.10

To complement the data from single colonies, we isolated
megakaryocyte progenitors (MkPs) and other progenitor cell
populations from peripheral blood by FACS (supplemental
Figure 6). Consistent with the data obtained in the analysis of
single colonies, in the vast majority of patients, the JAK2-mutant
VAF was low in MkPs and other sorted progenitor subsets
(Figure 2B; supplemental Figure 7). In contrast, a large per-
centage of erythroid progenitors was positive for the JAK2
mutation in previous reports, when patients with higher JAK2

allele burden were analyzed.9,11,12 Thus, the expansion of the
JAK2-mutant clone at terminal stages of erythroid and/or
megakaryocytic development appears to be typical for the low
allele burden subset of MPN patients (Figure 2C).

Lineage-biased HSCs and long-term progenitors have been
described.13-16 We hypothesized that MPN patients with low VAF
might acquire the JAK2 mutation in such progenitors and we
expected that single platelet-biased or red cell–biased patterns
would be the most frequent. However, our data do not favor
such a model. The frequent occurrence of the platelet and red
cell–biased pattern in MPN patients with low VAF fits with the
proposed model of a “biological continuum” between the
phenotypes of JAK2-V617F1 ET and PV.17 However, none of
the PV or ET patients with low VAF displayed a dominant ho-
mozygous subclone (supplemental Figure 5), which is typically
found in the majority of PV patients.11,12,18

To examine the role of additional somatic mutations, we ana-
lyzed 104 cancer-related genes using targeted next-generation
sequencing.19 Additional somatic mutations were detected in
12 of the 46 patients with low VAF (26%) (supplemental Figure 8;
supplemental Table 1). The presence of additional somatic
mutations had no relevant impact on the mutant allele distri-
butions (supplemental Figure 8D). We determined the clonal
architecture in 11 of 12 patients with additional somatic gene
mutations by genotyping single hematopoietic colonies (sup-
plemental Figure 8E). A sequential pattern of acquisition of
mutations was observed in 4 of 11 patients (36%). In all of these
patients, the additional somatic mutation was acquired before
JAK2-V617F. In the remaining 7 patients (64%), a biclonal
pattern was observed, with the JAK2 mutation and the addi-
tional somatic gene mutation representing separate clones.
Thus, interestingly, none of the patients with low VAF displayed
JAK2 mutation as the first event, and the frequency of the
biclonal pattern appears to be higher than the reported fre-
quency of 30% in overall MPNs.19,20

To derive hypotheses that could explain the observed clonal
structures, we generated an online app based on a compart-
mental mathematical model of hematopoiesis (https://ibz-shiny.
ethz.ch/ashcroft/lowJAK2/app/; supplemental Methods). This
model approximates the continuous process of hematopoietic
development and assumes that the cells in each compartment
are homogeneous and indistinguishable. All analysis is based on
the steady state of the system.21-23 The dynamics of cells in each
compartment can be described by 4 parameters: self-renewal
probability (ai), division rate (bi), lineage bias (cij), and probability
of death (di) (Figure 2D). The influence of independently varying
the mutant’s parameters on the mutant allele burden is sum-
marized in supplemental Figure 9. By modifying the parameters
at different stages of hematopoietic development, we can
qualitatively reproduce all observed patterns of clonal expansion
in MPN patients with low VAF (Figure 2E; supplemental Fig-
ure 10). We therefore hypothesize that interindividual differ-
ences in these 4 parameters are sufficient to explain the different
patterns of mutant allele burden observed in MPN patients.
Indeed, differences in expression levels of JAK2 and MPL
protein have been shown to determine thrombopoietin-induced
megakaryocyte proliferation vs differentiation,24 and, on mouse
models, resulted in switching between ET and PV phenotypes.25

Additional factors contributing to interindividual differences in
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Figure 1. Analysis of JAK2 VAFs in peripheral blood. (A) Comparison of JAK2 VAF measured in RNA from granulocytes (GRA) vs platelets (PLT). Dashed lines connect data
points from the same patient. (B) Comparison of JAK2 VAF measured in RNA from granulocytes vs reticulocytes (RET). (C) JAK2 VAF in purified cell populations from peripheral
blood. Boxes represent 50%of themeasured values; whiskers indicate the range; and horizontal lines indicate themedian. The JAK2 VAF of 22 patientsmeasured in DNAor RNA
fromdifferent peripheral blood lineages is shown below. Numbers in the cells of the table indicate the percentages of JAK2 VAF; the shading of boxes corresponds to the ranges
shown on the right. (D) Patterns of lineage contribution of the JAK2-mutant cells derived from the data presented in panels A and B. **P, .01; ***P, .001; ****P, .0001. B, B cell;
MO, monocyte; NK, natural killer cell; ns, not significant; T, T cell; UPN, unique patient number.
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Figure 2. Analysis of JAK2 VAFs in hematopoietic progenitors. (A) Analysis of single colonies grown in methylcellulose. Single erythroid colonies (burst-forming unit–
erythroid [BFU-E]) and granulocyte or granulocyte/monocyte colonies (colony-forming unit granulocyte/granulocyte-macrophage [CFU-G/GM]) were picked, and the per-
centage of JAK2-mutant colonies was converted into VAF by taking into account the heterozygous and homozygous state of each colony. (B) JAK2 VAF in FACS-sorted
progenitor cells and mature blood cells. Data from 17 MPN patients are shown. Data points connected by solid lines were obtained from FACS-sorted progenitor cells. Dashed
lines connect the progenitors with their corresponding mature cells isolated from peripheral blood. (C) Model depicting the stages of hematopoiesis in which the clonal
expansion occurred in MPN patients with low JAK2 VAF. (D) Schematic illustration of dynamics in a branched population structure. (E) Modeling of a common platelet and red
cell–biased pattern using the branched compartmental model of hematopoiesis. The distribution of JAK2-mutant cells observed in MPN patients with low VAF can be
reproduced by altering the division rate (b), self-renewal (a), and death (d) probabilities, and the differentiation bias (c) at specific stages of hematopoietic development. For the
clonal expansion during terminal stages of megakaryopoiesis, Da signifies the probability that megakaryocytes repeatedly undergo endomitosis resulting in higher ploidy,
and the division rate Db stands for the number of endomitoses per time unit, for example, per day. Hematopoietic cell compartments are indicated on the x-axis. **P , .01;
****P , .0001. CLP, common lymphoid progenitor; CMP, common myeloid progenitor; EP, erythroid progenitor; HSPC, hematopoietic stem and progenitor cell; Meg,
megakaryocyte; MEP, megakaryocyte-erythroid progenitor.
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humans could be the availability and activity of downstream
signaling components and differences in genetic background.
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Supplemental Methods 

 

Patient cohort 

Blood samples and clinical data of MPN patients were collected at the University 

Hospital Basel, Switzerland and at the Clinical Center of Serbia, Belgrade, Serbia. 

The study was approved by the local Ethics Committees (Ethik Kommission Beider 

Basel and Ethics commissions of Clinical Center of Serbia and Institute for Medical 

Research, University of Belgrade, Belgrade). Written informed consent was obtained 

from all patients in accordance with the Declaration of Helsinki. The diagnosis of 

MPN was established according to the 2016 revision of the World Health 

Organization classification of myeloid neoplasms and acute leukemia.1,2 

 

Isolation of individual cell types 

Fresh peripheral blood was centrifuged to separate platelet-rich plasma from white 

and red blood cells. Platelets were isolated from platelet-rich plasma by Sepharose 

chromatography and purity was determined by an ADVIA120 Hematology Analyzer 

using Multispecies Version 5.9.0-MS software (Bayer, Supplemental Figure S2C). 

Fractions of peripheral blood mononuclear cells (PBMCs), granulocytes and red cells 

were separated by density centrifugation using Lymphoprep (by Axis-Shield). 

PBMCs and granulocytes were treated with red cell lysis buffer (0.15 M NH4Cl, 0.01 

M KHCO3, 0.05 M EDTA, pH8). Reticulocytes were enriched from the erythrocyte 

fraction using CD71 MicroBeads (130-046-201, Miltenyi Biotec) and further purified 

by FACS sorting using the following antibodies: PE/Cy7 anti-human CD45 (304016, 

Biolegend), APC anti-human CD71 (334108, Biolegend), Pacific Blue anti-human 

CD235a (349108, Biolegend) and PE anti-human CD42a (558819, BD Biosciences). 

Monocytes, NK-cells, B- and T-cells were purified by FACS sorting from PBMCs 

using the following antibodies: PE anti-human CD335 (331908, Biolegend), BV421 

anti-human CD3 (317344, Biolegend), APC anti-human CD14 (325608, Biolegend) 

and FITC anti-human CD19 (302206, Biolegend). The progenitors were purified by 

FACS sorting from PBMCs using the following antibodies: BV786 anti-human 

CD45RA (563870, BD Biosciences), APC-H7 anti-human CD71 (563671, BD 

Biosciences), PerCP/Cy5.5 anti-human CD105 (323215, Biolegend), FITC anti-

human lineage cocktail (348701, Biolegend), BV605 anti-human CD123 Antibody 

(306025, Biolegend), SYTOX Dead Cell Stain (S34860, Thermo Fisher Scientific), 
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PE anti-human CD42a (558819, BD Biosciences), Pacific Blue anti-human CD34 

(343512, Biolegend) and APC anti-human CD38 (356606, Biolegend). The gating 

strategies are depicted in Supplemental Figure 3A-D.3 

DNA from granulocytes was extracted with Qiamp DNA mini kit (Qiagen). RNA 

from granulocytes and platelets was extracted using Trifast Peq Gold (PEQLAB 

Biotechnologie). RNA from sorted cells was extracted by PicoPure RNA Isolation Kit 

(Thermo Fisher Scientific). 

 

Quantification of JAK2-V617F and JAK2-exon 12 variant allele fraction (VAF) 

An allele-specific polymerase chain reaction (AS-PCR) was performed for the 

detection of JAK2-V617F in genomic DNA.4 The SNaPshot Multiplex Kit (Applied 

Biosystems) was applied for the detection of the JAK2-V617F mutation in RNA 

samples and the detection of JAK2-exon12 mutations in DNA and RNA.4,5 The 

primers for these analyses are shown below.  

 

 

 

 

 

 

 

The amplicons generated by AS-PCR or SNaPshot Multiplex Kit were analyzed with 

an ABI3130xl Genetic Analyzer (Applied Biosystems Inc.). The VAF was calculated 

by Peak heightmut / (Peak heightmut + Peak heightwt) x 100 %. 

 

Next-generation sequencing analyses 

To detect additional somatic mutations, DNA from granulocytes was analyzed with a 

targeted NGS approach covering the coding regions of 104 genes, as previously 

published.6 For library preparation, 500 ng of genomic DNA from granulocytes was 

fragmented by ultrasonic sheering (Covaris) and barcoded using NEXTflex Rapid 

DNA Sequencing Kit and barcodes (BiooScientific). Agilent SureSelect custom 

design was used for the capture of target regions. Paired-end 100-bp cycle sequencing 

of the captured libraries was performed using an Illumina HiSeq2000. CLC genomics 

workbench was used for mapping of the raw reads and variant calling.  

List of primers used in the study Assay Primer ID Primer sequence (5'-3')
Jak2-V617F-RT 6Fam-AAATTACTCTCGTCTCCACAGAA
Jak2-V617F-F GTTTCTTAGTGCATCTTTATTATGGCAGA
Jak2-V617F-RG 6Fam-TTACTCTCGTCTCCACAGAC
4586_hJak2_intron13_fwd AGAATTTTCTGAACTATTTATGG
4587_hJak2_intron14_rev ACCTAGCTGTGATCCTGAAACTG
4336_hJAK2-ex13-fwd GGCGTACGAAGAGAAGTAG
4337_hJAK2-ex15-rev GCCCATGCCAACTGTTTA

Quantification of JAK2-V617F SNaPshot assay 4338_hJAK2-VF-SNaP-fwd AAGCATTTGGTTTTAAATTATGGAGTATGT
2075_hJAK2-exon12-F CAAAGTTCAATGAGTTGACCCC
2076_hJAK2-exon12-R TGCTAACATCTAACACAAGGTTGG
4416_hJAK2-exon11-fwd ACTAAATGCTGTCCCCCAAA
4417_hJAK2-exon13-rev TACTTCTCTTCGTACGCCTT

Quantification of JAK2-exon12 (P021) SNaPshot assay 4420_P021del_SNPsht_fwd AAAGTCTGACAACAAATGGTGTTTCACAAAATCAGA
Quantification of JAK2-exon12 (P218) SNaPshot assay 4426_P216aaTT_SNPsht_rev TAGGTAAATATCAAATCTTCATTTCTGATT

Amplification of JAK2 exon 14 from DNA

Amplification of JAK2 exon 12 from DNA

Quantification of JAK2-V617F in DNA

Amplification of JAK2 exon 12 from RNA

Amplification of JAK2 exon 14 from RNA

asPCR

SNaPshot assay

SNaPshot assay

SNaPshot assay

SNaPshot assay
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Methylcellulose assay 

The colony assays were performed using peripheral blood mononuclear cells from 

patients as previously published.7 In brief, PBMCs were seeded in methylcellulose 

(H4034, StemCell technologies) and cultured at 37°C and 5% CO2. After 14 days, 

colonies were picked for DNA extraction and analyzed individually for JAK2-V617F 

using AS-PCR and for the presence of somatic mutations by Sanger sequencing, 

respectively. On average, 178 colonies per patient were analyzed. To determine the 

temporal order of mutation acquisition, at least 2 informative colonies were required.  

 

Statistical analysis 

Statistical significance of the data was tested with one-way ANOVA or two-way 

ANOVA and analyzed using GraphPad Prism 7 software with the following 

significance levels: p<0.05= *, p<0.01= ** and p<0.001= ***. 

 

Mathematical modeling 

A simple compartmental model is used that is based on existing models of 

hierarchical tissue structures.8-10 In such a model, cells are assigned into one of a 

number of compartments based on their phenotype, with stem cells (HSCs) occupying 

the first compartment (𝑖 = 1). Each compartment 𝑖 contains a number of cells, which 

we write as 𝑥!. The parameter set {𝑎! , 𝑏! , 𝑐!" ,𝑑!} determines the dynamics of the cells 

in each compartment in the following way: 

 

1. A cell in compartment 𝑖 is chosen to divide with rate 𝑏! (per unit time); 

2. With probability 𝑑!, the chosen cell dies and is lost from the population; 

3. If the chosen cell survives, then with probability 𝑎! it generates two daughter 

cells that remain in the same compartment (self-renewal); 

4. With probability 1− 𝑎!, the daughter cells are differentiated from the parent; 

5. Of these differentiated cells, a fraction 𝑐!" transform into type-𝑗 cells. This 

parameter represents the differentiation bias of the type-𝑖 cells. If 𝑐!" = 1, then 

only type-𝑗 cells can be produced when 𝑖 differentiates. If 𝑐!" = 0, then type-j 

cells cannot be produced by 𝑖. 
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These dynamics are highlighted in the Figure 1 below. 

	
Figure 1: Cell dynamics schematic 

The JAK2-V617F clone follows the same dynamical structure, but parameters may be 

different from those of the wild-type. Each compartment 𝑖 has 𝑦! mutant cells, and 

their dynamics are described by the parameter set {𝑎!!, 𝑏!!, 𝑐!"! ,𝑑!!}. For simplicity, we 

assume there is no interaction between the wildtype and mutant cells. The dynamical 

equations for this process are then given by 

𝒙! = 𝟐 𝒃𝒋 𝟏 − 𝒅𝒋 𝟏 − 𝒂𝒋 𝒄𝒋𝒊
𝒋

𝒙𝒋 − 𝒃𝒊 𝟏 − 𝟐𝒂𝒊 𝟏 − 𝒅𝒊 𝒙𝒊,# 𝟏𝐚  

𝒚! = 𝟐 𝒃𝒋′ 𝟏 − 𝒅𝒋′ 𝟏 − 𝒂𝒋′ 𝒄𝒋𝒊′𝒚𝒋
𝒋

− 𝒃𝒊′ 𝟏 − 𝟐𝒂𝒊′ 𝟏 − 𝒅𝒊′ 𝒚𝒊.# 𝟏𝐛  

These equations permit the steady state 𝑥!∗,𝑦!∗ . Note that 𝑎! 1− 𝑑! = 𝑎!′ 1−

𝑑!′ = 0.5 is required for the steady-state to exist. We then investigate how changes 

to the mutant-specific parameters alter the variant allele fraction (VAF) when the 

system has reached its steady state. This VAF is defined as the fraction of mutant 

cells in a given compartment: 

𝑧! =
𝑦!∗

𝑥!∗ + 𝑦!∗
. 

If the parameters of the mutant cells are identical to the WT, i.e. 𝑎!! = 𝑎!, 𝑏!! = 𝑏!, 

𝑐!"! = 𝑐!", and 𝑑!! = 𝑑! for all 𝑖, 𝑗, then VAF is preserved from the HSCs such that 

𝑧! ≡ 𝑧! for all 𝑖. Varying the mutant's parameters from the WT's, however, will 

change the VAF across the compartments. Below we consider the VAF response to 

changes in a single parameter from {𝑎!!, 𝑏!!, 𝑐!"! ,𝑑!!}. In Figures 2E, S9 and S10, the 

parameter change from WT to mutant is represented as the fractional difference, e.g. 

∆𝑎! = (𝑎!! − 𝑎!)/𝑎!. 
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Varying division rates: Increasing the division rate of the mutant in a single 

downstream compartment (𝑏!  for 𝑖 > 1) will decrease the VAF observed in that 

compartment, but will remain unchanged elsewhere (Figure S9B, left panel). If the 

mutant HSC division rate (𝑏!) is increased, then the mutant VAF increases in all 

downstream compartments, while it remains constant in the HSCs. Combining these 

two observations, a late clonal expansion can be observed by in compartment 𝑖 by 

increasing division rates 𝑏! for all compartments 𝑗 upstream of 𝑖 (Figure S9B, right 

panel). 

 

Varying death rate: Decreasing the probability that a mutant cell dies in compartment 

𝑖 (𝑑!) leads to an increase VAF in that compartment, and an even greater increase in 

VAF in downstream compartments (Figure S9C, left panel). Late clonal expansions 

can then be observed if the final mutant progenitor cells are less likely to die (Figure 

S9C, right panel). 

 

Varying self-renewal probabilities: If the mutants have an increased probability to 

self-renew in compartment 𝑖, then the mutant VAF will increase in that compartment 

as well as in downstream compartments, although to a lesser extent (Figure S9D, left 

panel). Late clonal expansions can then be observed if the final mutant progenitor 

cells are more likely to self-renew (Figure S9D, right panel). 

 

Varying lineage bias: The impact of modifying the lineage bias of mutant cells 𝑐!"!  is 

quite predictable: If mutant cells are more prone to differentiating into one lineage, 

then the VAF will increase in that lineage and decrease in the other. This is shown in 

Figure S9F. 

 

Finally, we comment on the assumptions of the model. The compartmentalized view 

of hematopoiesis that we employ here is an approximation of the continuous process – 

in reality cell phenotypes can take in infinite number of values. The discrete models 

reflect the classical treatment of phenotype data, where cells are clustered into 

compartments based on properties such as surface-marker or RNA expression. 

Bridging the gap between the discrete and continuum views of hematopoiesis is an 

emerging direction of research, but it has been shown that a suitable choice of 



	 6 

differentiation rate function in the continuous model can reproduce exactly the 

dynamics of the discrete model.11-12	Therefore, we can say our results are robust to the 

choice of modelling framework. 

 

We also provide an online app for the mathematical modeling that can be used to test 

various settings of the parameters and observe the resulting alterations in the variant 

allele frequencies that are predicted to occur:  

https://ibz-shiny.ethz.ch/ashcroft/lowJAK2/app/ 

The code archive can be found at: https://www.doi.org/10.5281/zenodo.3900156 
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Supplemental Figure S1: A) JAK2-V617F variant allele fraction (VAF) in granulocyte DNA in the 
Basel cohort of MPN patients. ET, essential thrombocythemia, PV, polycythemia vera, PMF, 
primary myelofibrosis. Patients with JAK2 VAF ≤ 20% (yellow box) were selected for further 
analysis. B) Survival of patients from the Basel cohort with low mutant allele burden depicted as a 
Kaplan-Meier plot (p values determined by log-rank Mantel-Cox test). C) Survival of patients with 
low JAK2 VAF from a second independent cohort of MPN patients. D) Survival for individual MPN 
subentities. Patients from both cohorts were combined and are plotted separately for each MPN 
subentity.
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a low JAK2-V617F variant allele fraction (VAF). 

White blood cells
& Erythrocytes

Platelet-rich
plasma

Plasma
PBMCs
Ficoll
Granulocytes

Erythrocytes

enr. Reticulocytes Reticulocytes

Platelets

Granulocytes

T-cells
B-cells
NK-cells
Monocytes

HSC
MEP
MkP

EP

Sephadex-column
purification

Centrifugation
100g 10min

Red cell lysis

PBMCs

Single colony assay:
BFU-E, CFU-G/M

FACS sort:
(Figure S7A)

FACS sort:
(Figure S2D)

MACS based
CD71-enrichment

FACS sort
(Figure S7B & C)

Methylcellulose

Peripheral
blood
+citrat

Mature 
blood cells

Progenitor
 compartment

C

0 5 10 15 20 25
0

5

10

15

20

25

JAK2-V617F VAF in granulocyte 
DNA versus granulocyte RNA 

R2 = 0.8423
y = 0.9071x + 1.281

JAK2 VAF in DNA  (%)

10-6

10-5

10-4

10-3

10-2

10-1

1

re
la

tiv
e 

to
 β

-a
ct

in
 

Expression in platelet RNA

ITGA2B
(CD41)

GYPA
(CD235a)

JA
K2

 V
AF

 in
 R

N
A 

 (%
)



0 50K 100K 150K 200K 250K

0

50K

100K

150K

200K

250K

FSC-A

S
S

C
-A

0 50K 100K 150K 200K 250K

0

-10 3

10 3

10 4

10 5

P
I

FSC-A
0-10 3 10 3 10 4 10 5

0

-10 3

10 3

10 4

10 5

C
D

19

CD3

0-10 3 10 3 10 4 10 5

0

-10 3

10 3

10 4

10 5

C
D

14

CD335

0-10 3 10 3 10 4 10 5

0

-10 3

10 3

10 4

10 5

C
D

14
CD335

Monocytes

NK-cells

0-10 3 10 3 10 4 10 5

0

-10 3

10 3

10 4

10 5

C
D

19

CD3

B-cells

T-cells

Sorting of Monoctytes, NK-cells, B-cells and T-cells from peripheral blood mononuclear cellsC

Sorting of reticulocytes from CD71-enriched red cell fractionA

10 2 10 3 10 4 10 5

10 1

10 2

10 3

10 4

10 5

CD71

C
D

45

10 2 10 3 10 4 10 5

0

-10 3

10 3

10 4

10 5

C
D

42

CD71
10 2 10 3 10 4 10 5

0

-10 3

10 3

10 4

10 5

P
I

CD71
10 2 10 3 10 4 10 5

0

-10 3

10 3

10 4

10 5

C
D

23
5a

CD71

Reticulocytes

Reanalysis of sorted reticulocytesB

10 2 10 3 10 4 10 5

10 1

10 2

10 3

10 4

10 5

10 2 10 3 10 4 10 5

0

-10 3

10 3

10 4

10 5

10 2 10 3 10 4 10 5

0

-10 3

10 3

10 4

10 5

10 2 10 3 10 4 10 5

0

-10 3

10 3

10 4

10 5

CD71

C
D

45

C
D

42

CD71
P

I
CD71

C
D

23
5a

CD71

Supplemental Figure S3: Gating strategy for sorting of cell populations from peripheral blood.
A and B) Strategy for sorting and reanalyzing reticulocytes from CD71-enriched red cell fraction from 
peripheral blood. C) Sorting of white blood cell lineages from peripheral blood mononuclear cells.
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Sorting of hematopoietic progenitors from peripheral blood of P328A

Supplemental Figure S6

Supplemental Figure S6: Gating strategy for the sorting of hematopoietic progenitors. A) Sorting of 
peripheral blood mononuclear cells. B) Sorting of bone marrow cells. HSC, hematopoietic stem cell; 
MEP, megakaryocyte erythroid progenitor; MkP, megakaryocyte progenitor; EP, erythroid progenitor 
cells.
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Supplemental Figure S7: JAK2 variant allele fraction (VAF) in FACS-sorted progenitor cells and 
mature blood cells. Data of 17 individual MPN patients are shown. Cells from bone marrow (BM) were 
analyzed in one patient (P368), all other analyses were performed on cells from peripheral blood. 
Data points connected by solid lines were obtained from FACS-sorted progenitor cells. Dashed lines 
connect the progenitors with their corresponding mature cells isolated from peripheral blood. HSPC, 
hematopoietic stem and progenitor cells; MEP, megakaryocyte-erythroid progenitors; MkP, mega-
karyocytic progenitors; EP, erythroid progenitors. 
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Supplemental Figure S8: Mutation profiles of MPN patients with low JAK2 variant allele fraction (VAF). 
A) Proportions of patients with additional somatic mutations from a previously published cohort of 
JAK2-V617F mutant patients and the 46 patients with low JAK2 VAF. B) Distribution of additional somatic 
mutations detected by targeted next generation sequencing. C) Number of patients with mutations in the 
indicated genes. D) Distribution of JAK2 VAF in patients with or without additional somatic mutations. E) 
Clonal architecture determined by single colony genotyping in 11 MPN patients carrying multiple somatic 
mutations. Y-axis indicates the percentage of the colonies with or without the corresponding somatic 
mutations. The order of events depicted was deduced from the single clone analysis at one time point 
only. 
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Supplemental Figure S9: Mathematical modeling of the individual parameters
We first modeled the effects that changes in individual parameters would have in a linear single lineage struc-
ture (A-D). The model (A) predicts that increasing the mutant cells' division rate solely at one stage of hemato-
poietic development will decrease the variant allele fraction (VAF) at this specific stage (B, left panel). A late 
clonal expansion at the final stage would result from increasing the division rate b in all preceding compart-
ments (B, right panel). Such a situation increases the number of mutant cells flowing through the system, and 
then accumulating when they become terminally differentiated and stop dividing. Decreasing the death rate d 
at any stage leads to an increase in the VAF in this compartment, and a greater increase in the downstream 
compartments (C, left panel). Thus a lower death rate in the penultimate compartment could be observed as a 
late clonal expansion in the final two stages of development (C, right panel). Increasing the self-renewal proba-
bility a solely at one specific stage will increase the VAF in that compartment, plus in all subsequent compart-
ments (D, left panel). A late clonal expansion could then be observed if there is greater amplification between 
the final compartment and its immediate progenitor (via a transient cell type between, e.g., the BFU-E and 
reticulocyte compartments; D, right panel). Since hematopoiesis is not a linear process, population branching 
is an additional source for altering VAF across the different lineages. Here we introduced an additional para-
meter, the lineage bias cij, that determines how the differentiated offspring of a multipotent cell are distributed 
across the different lineages (E). If the mutant cells have a bias towards a certain lineage, then the VAF will 
increase within that branch (F).
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Supplemental Figure S10: Modeling of two individual cases with single lineage expansion. 
A) "Platelet-biased" pattern as observed in ET patient P433, B) "Red cell-biased" pattern as observed 
in  PV patient P328. HSC, hematopoietic stem cell; CMP, common myeloid progenitor; MEP, mega-
karyocyte erythrocyte progenitor; MkP, megakaryocyte progenitor; Meg, megakaryocyte; PLT, platelet; 
EP, erythroid progenitors; RET, reticulocyte; CFU-G, colony-forming unit granulocyte; GRA, granulocy-
te; VAF, variant allele fraction
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