Likelihood of mean vs replicates

Is the likelihood of the a set of replicate observations equivalent to the likelihood of the mean of those replicates?

Question formulation

Suppose we have a dataset $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$, for which we have a model θ which predicts a value \widehat{z} to match these observations. Assuming the z_{i} are normally distributed, the likelihood of observing this data given the model θ is

$$
\begin{equation*}
\mathcal{L}\left(\left\{z_{1}, z_{2}, \ldots, z_{n}\right\} \mid \theta\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(z_{i}-\widehat{z}\right)^{2}}{2 \sigma^{2}}\right) \tag{1}
\end{equation*}
$$

where σ is the observation error, which we assume to be given by the standard deviation of $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$. The log-likelihood is given by

$$
\ln \mathcal{L}\left(\left\{z_{1}, z_{2}, \ldots, z_{n}\right\} \mid \theta\right)=-\frac{n}{2} \ln \left(2 \pi \sigma^{2}\right)-\sum_{i=1}^{n} \frac{\left(z_{i}-\widehat{z}\right)^{2}}{2 \sigma^{2}}
$$

Alternatively, instead of considering each individual replicate of data, we could instead fit just the mean $\bar{z}=\left(\sum_{i=1}^{n} z_{i}\right) / n$, with the likelihood now given by

$$
\begin{equation*}
\mathcal{L}(\bar{z} \mid \theta)=\frac{1}{\sqrt{2 \pi \bar{\sigma}^{2}}} \exp \left(-\frac{(\bar{z}-\widehat{z})^{2}}{2 \bar{\sigma}^{2}}\right) \tag{2}
\end{equation*}
$$

where $\bar{\sigma}$ is the error of the mean. The log-likelihood is given by

$$
\ln \mathcal{L}(\bar{z} \mid \theta)=-\frac{1}{2} \ln \left(2 \pi \bar{\sigma}^{2}\right)-\frac{(\bar{z}-\widehat{z})^{2}}{2 \sigma^{2}}
$$

The question I ask here is, are these two formulations equivalent?

Solution

We can manipulate Eq. (1) to produce the following expression:

$$
\begin{equation*}
\mathcal{L}\left(\left\{z_{1}, z_{2}, \ldots, z_{n}\right\} \mid \theta\right)=\frac{1}{\left(2 \pi n \frac{\sigma^{2}}{n} e\right)^{\frac{n}{2}}} \exp \left(-\frac{(\langle z\rangle-\widehat{z})^{2}}{2 \frac{\sigma^{2}}{n}}\right) \tag{3}
\end{equation*}
$$

where σ / \sqrt{n} is the standard error of the mean (SEM).
We see that the exponential term of the likelihood has a direct agreement with $\mathcal{L}(\bar{z} \mid \theta)$ [Eq. (2)] using $\bar{\sigma}=\sigma / \sqrt{n}$. However, the prefactor is incomparable between the two formulations.

Therefore, there is no direct equivalence between the likelihood of the individual replicates and the likelihood of the mean.

Explicit calculation

Explicitly, we use the following expressions:

$$
\begin{aligned}
\langle z\rangle & =\frac{\sum_{i=1}^{n} z_{i}}{n} \\
\left\langle z^{2}\right\rangle & =\frac{\sum_{i=1}^{n} z_{i}^{2}}{n}, \\
\operatorname{var}(\mathrm{z}) & =\left\langle z^{2}\right\rangle-\langle z\rangle^{2}=\sigma^{2},
\end{aligned}
$$

and then Eq. (1) can be treated as

$$
\begin{aligned}
\mathcal{L}\left(\left\{z_{1}, z_{2}, \ldots, z_{n}\right\} \mid \theta\right) & =\left(2 \pi \sigma^{2}\right)^{-\frac{n}{2}} \exp \left(-\frac{\sum_{i=1}^{n}\left(z_{i}-\widehat{z}\right)^{2}}{2 \sigma^{2}}\right) \\
& =\left(2 \pi \sigma^{2}\right)^{-\frac{n}{2}} \exp \left(-\frac{\sum_{i=1}^{n}\left(z_{i}^{2}-2 z_{i} \widehat{z}-\widehat{z}^{2}\right)}{2 \sigma^{2}}\right) \\
& =\left(2 \pi \sigma^{2}\right)^{-\frac{n}{2}} \exp \left(-\frac{\left(n\left\langle z^{2}\right\rangle-2 n\langle z\rangle \widehat{z}-n \widehat{z}^{2}\right)}{2 \sigma^{2}}\right) \\
& =\left(2 \pi \sigma^{2}\right)^{-\frac{n}{2}} \exp \left(-\frac{n\left(\operatorname{var}(\mathrm{z})+\langle z\rangle^{2}-2\langle\mathrm{z}\rangle \widehat{\mathrm{z}}-\widehat{\mathrm{z}}^{2}\right)}{2 \sigma^{2}}\right) \\
& =\left(2 \pi \sigma^{2}\right)^{-\frac{n}{2}} \exp \left(-\frac{n \operatorname{var}(\mathrm{z})}{2 \sigma^{2}}\right) \exp \left(-\frac{n\left(\langle z\rangle^{2}-2\langle z\rangle \widehat{z}-\widehat{z}^{2}\right)}{2 \sigma^{2}}\right) \\
& =\left(2 \pi \sigma^{2}\right)^{-\frac{n}{2}} \exp \left(-\frac{n \sigma^{2}}{2 \sigma^{2}}\right) \exp \left(-\frac{n(\langle z\rangle-\widehat{z})^{2}}{2 \sigma^{2}}\right) \\
& =\left(2 \pi \sigma^{2} e\right)^{-\frac{n}{2}} \exp \left(-\frac{(\langle z\rangle-\widehat{z})^{2}}{2 \frac{\sigma^{2}}{n}}\right) .
\end{aligned}
$$

