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ETH Zürich
B peter.ashcroft@env.ethz.ch

Í ashcroftp.github.io

Is the likelihood of the a set of replicate observations equivalent to the likelihood of the mean of
those replicates?

Question formulation
Suppose we have a dataset {z1, z2, . . . , zn}, for which we have a model θ which predicts a value ẑ to match
these observations. Assuming the zi are normally distributed, the likelihood of observing this data given
the model θ is

L({z1, z2, . . . , zn}|θ) =
n∏
i=1

1√
2πσ2

exp

(
−(zi − ẑ)2

2σ2

)
, (1)

where σ is the observation error, which we assume to be given by the standard deviation of {z1, z2, . . . , zn}.
The log-likelihood is given by

lnL({z1, z2, . . . , zn}|θ) = −
n

2
ln(2πσ2)−

n∑
i=1

(zi − ẑ)2

2σ2
.

Alternatively, instead of considering each individual replicate of data, we could instead fit just the mean
z = (

∑n
i=1 zi)/n, with the likelihood now given by

L(z|θ) = 1√
2πσ2

exp

(
−(z − ẑ)2

2σ2

)
, (2)

where σ is the error of the mean. The log-likelihood is given by

lnL(z|θ) = −1

2
ln(2πσ2)− (z − ẑ)2

2σ2
.

The question I ask here is, are these two formulations equivalent?

Solution
We can manipulate Eq. (1) to produce the following expression:

L({z1, z2, . . . , zn}|θ) =
1(

2πnσ
2

n e
)n

2

exp

(
−(〈z〉 − ẑ)2

2σ
2

n

)
. (3)

where σ/
√
n is the standard error of the mean (SEM).

We see that the exponential term of the likelihood has a direct agreement with L(z|θ) [Eq. (2)] using
σ = σ/

√
n. However, the prefactor is incomparable between the two formulations.

Therefore, there is no direct equivalence between the likelihood of the individual replicates and the likelihood
of the mean.
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Explicit calculation
Explicitly, we use the following expressions:

〈z〉 =
∑n

i=1 zi
n

,〈
z2
〉
=

∑n
i=1 z

2
i

n
,

var(z) =
〈
z2
〉
− 〈z〉2 = σ2,

and then Eq. (1) can be treated as

L({z1, z2, . . . , zn}|θ) =
(
2πσ2

)−n
2 exp

(
−
∑n

i=1(zi − ẑ)2

2σ2

)
=
(
2πσ2

)−n
2 exp

(
−
∑n

i=1(z
2
i − 2ziẑ − ẑ2)
2σ2

)
=
(
2πσ2

)−n
2 exp

(
−
(n
〈
z2
〉
− 2n 〈z〉 ẑ − nẑ2)

2σ2

)

=
(
2πσ2

)−n
2 exp

(
−n(var(z) + 〈z〉

2 − 2 〈z〉 ẑ− ẑ2)

2σ2

)

=
(
2πσ2

)−n
2 exp

(
−n var(z)

2σ2

)
exp

(
−n(〈z〉

2 − 2 〈z〉 ẑ − ẑ2)
2σ2

)

=
(
2πσ2

)−n
2 exp

(
−nσ

2

2σ2

)
exp

(
−n(〈z〉 − ẑ)

2

2σ2

)
=
(
2πσ2e

)−n
2 exp

(
−(〈z〉 − ẑ)2

2σ
2

n

)
.
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