## St. Petersburg paradox

## What is the probability of running out of money in a game with infinite expected return?

## Question formulation

We consider a repeatable game, where the player pays a fixed fee $m$ to enter. The pot starts at $\$ 1$, and doubles each time a head $(H)$ is thrown. The game stops when the first tail $(T)$ appears, and the player receives the current pot value, i.e.

$$
r(\mathrm{~T})=\$ 1, \quad r(\mathrm{HT})=\$ 2, \quad r(\mathrm{HHT})=\$ 4, \quad r(\mathrm{HHHT})=\$ 8, \quad \ldots
$$

The player begins with a balance of $s$, and can only play the game if $s \geq m$ (i.e. if they have enough money to pay the entry fee). We want to find $p_{m}(s)$, which is the probability that the gambler can play the game indefinitely (or that they do not run out of money).

## The paradox

This game is paradoxical because the expected return, $\langle r\rangle$, is infinite, so any rational gambler would play, no matter the cost of the entry fee $m$ :

$$
\begin{aligned}
r_{n}=2^{n} & \text { Return after } n \text { heads, } \\
p_{n}=\left(\frac{1}{2}\right)^{n}\left(1-\frac{1}{2}\right) & \text { Probability of } n \text { heads followed by a tail, } \\
\langle r\rangle=\left(\sum_{n=0}^{\infty} p_{n} r_{n}\right)-m=\left(\frac{1}{2} \sum_{n=0}^{\infty} 1\right)-m=\infty & \text { Expected return. }
\end{aligned}
$$

## Solution: Markov chain

The repeated game can be formulated as a Markov chain. Let $t$ denote the number of games played, and $P_{i}(t)$ be the probability that we have a balance of $i$ after $t$ games $(i \in\{1,2, \ldots\}, t \in\{0,1,2, \ldots\})$. Therefore, $P_{i}(0)=\delta_{i, s}$. We now want to express $P_{i}(t+1)$ as a function of $P_{i}(t)$. As the states $i<m$ are absorbing (we can't play any more if our balance is less than the entry fee $m$ ), we write down an equation for the absorbing states and an equation for the remainder:

$$
\begin{array}{ll}
P_{i}(t+1)=\sum_{n: i-\left(2^{n}-m\right) \geq m} p_{n} P_{i-\left(2^{n}-m\right)}(t)+P_{i}(t) & \text { for } 1 \leq i<m, \\
P_{i}(t+1)=\sum_{n: i-\left(2^{n}-m\right) \geq m} p_{n} P_{i-\left(2^{n}-m\right)}(t) & \text { for } m \leq i<\infty, \tag{1b}
\end{array}
$$

where the limit on the sum accounts for no transitions out of the absorbing states.
This Markov chain can be forward-integrated, starting form $P_{i}(0)$, to find the distribution of balances after $t$ games. The probability that we can continue playing $(i>m)$ after this time is then

$$
\begin{equation*}
p_{m}(s)=\lim _{t \rightarrow \infty}\left[1-\sum_{i=1}^{m-1} P_{i}(t)\right] \tag{2}
\end{equation*}
$$

To solve the Markov chain computationally we have to impose an artificial upper bound on the size of the state space, as well as on the number of iterations $t$.

The survival probability $p_{m}(s)$ is shown in Fig. 1 for a range of $m$ and $s$ parameters.


Figure 1: Survival probability after $2^{10}$ iterations and a state space of size $2^{10}$.

```
Mathematica code
computeMat[log2nStates_, m_] := Block[{nStates, weights, dim, mat},
    nStates = 2^
    weights = Table[(p^n (1 - p)) /. p -> 0.5, {n, 0, Floor[log2nStates ]}];
    dim}={nStates, nStates }
    mat = Total[
        Map[
            SparseArray[
                Table[{i,m + i - 2^#} -> weights[[# + 1]], {i, 2^#, Min[nStates - m + 2^#, nStates
                    ]}],
            dim] &,
            Range[0, Floor[log2nStates ]]
        ]
    ];
    mat += SparseArray[Table[{i, i} -> 1., {i, 1, m - 1}], dim];
    Return[mat]
]
computeP[log2nStates_, m_, s_, log2nlter_, mat_] :=
    Block[{nStates, nlter, P, Pfinal },
        nStates = 2^}\mp@subsup{}{}{\wedge}\operatorname{log}2nStates
        nlter = 2^ log2nlter;
        P = Normal[SparseArray[s -> 1., nStates]];
        Pfinal = Nest[Dot[mat, #] &, P, nlter ];
        Return[1. - Sum[Pfinal[[i ]], {i, 1, m - 1}]]
]
(*Construct the transition matrix for cost m and state-space size nStates*)
m = 2;
nStates = 2^10;
mat = computeMat[Log2[nStates], m];
s = 2;
nlter = 1000;
survivalProb = computeP[Log2[nStates], m, s, Ceiling[Log2[nlter ]], mat]
```


## Solution: Linear system

An alternative approach to this problem is to consider a linear system for the variables $p_{m}(s)$ themselves. I.e.

$$
\begin{equation*}
p_{m}(s)=\sum_{n=0}^{\infty} p_{n} p_{m}\left(s+2^{n}-m\right) \tag{3}
\end{equation*}
$$

with $p_{m}(s)=0$ for $s<m$. The solution Eq. (3) is directly related to the stationary solution of Eqs. (1). Computationally, as above, we have to put an upper bound on the state space

