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What is the probability of running out of money in a game with infinite expected return?

Question formulation
We consider a repeatable game, where the player pays a fixed fee m to enter. The pot starts at $1, and
doubles each time a head (H) is thrown. The game stops when the first tail (T) appears, and the player
receives the current pot value, i.e.

r(T) = $1, r(HT) = $2, r(HHT) = $4, r(HHHT) = $8, . . . .

The player begins with a balance of s, and can only play the game if s ≥ m (i.e. if they have enough
money to pay the entry fee). We want to find pm(s), which is the probability that the gambler can play
the game indefinitely (or that they do not run out of money).

The paradox
This game is paradoxical because the expected return, 〈r〉, is infinite, so any rational gambler would play,
no matter the cost of the entry fee m:

rn = 2n Return after n heads,

pn =

(
1

2

)n(
1− 1

2

)
Probability of n heads followed by a tail,

〈r〉 =

( ∞∑
n=0

pnrn

)
−m =

(
1

2

∞∑
n=0

1

)
−m =∞ Expected return.

Solution: Markov chain
The repeated game can be formulated as a Markov chain. Let t denote the number of games played,
and Pi(t) be the probability that we have a balance of i after t games (i ∈ {1, 2, . . . }, t ∈ {0, 1, 2, . . . }).
Therefore, Pi(0) = δi,s. We now want to express Pi(t+1) as a function of Pi(t). As the states i < m are
absorbing (we can’t play any more if our balance is less than the entry fee m), we write down an equation
for the absorbing states and an equation for the remainder:

Pi(t+ 1) =
∑

n : i−(2n−m)≥m

pnPi−(2n−m)(t) + Pi(t) for 1 ≤ i < m, (1a)

Pi(t+ 1) =
∑

n : i−(2n−m)≥m

pnPi−(2n−m)(t) for m ≤ i <∞, (1b)

where the limit on the sum accounts for no transitions out of the absorbing states.

This Markov chain can be forward-integrated, starting form Pi(0), to find the distribution of balances after
t games. The probability that we can continue playing (i > m) after this time is then

pm(s) = lim
t→∞

[
1−

m−1∑
i=1

Pi(t)

]
. (2)

To solve the Markov chain computationally we have to impose an artificial upper bound on the size of the
state space, as well as on the number of iterations t.

The survival probability pm(s) is shown in Fig. 1 for a range of m and s parameters.
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Figure 1: Survival probability after 210 iterations and a state space of size 210.

Mathematica code
computeMat[log2nStates , m ] := Block[{nStates, weights , dim, mat},

nStates = 2ˆlog2nStates;
weights = Table[(pˆn (1 − p)) /. p −> 0.5, {n, 0, Floor [ log2nStates ]}];
dim = {nStates, nStates};

mat = Total[
Map[

SparseArray[
Table[{ i , m + i − 2ˆ#} −> weights[[# + 1]], {i, 2ˆ#, Min[nStates − m + 2ˆ#, nStates

]}],
dim] &,

Range[0, Floor [ log2nStates ]]
]

];
mat += SparseArray[Table[{i, i} −> 1., {i , 1, m − 1}], dim];
Return[mat]

]

computeP[log2nStates , m , s , log2nIter , mat ] :=
Block[{nStates , nIter , P, Pfinal },
nStates = 2ˆlog2nStates;
nIter = 2ˆlog2nIter ;
P = Normal[SparseArray[s −> 1., nStates ]];
Pfinal = Nest[Dot[mat, #] &, P, nIter ];
Return[1. − Sum[Pfinal[[ i ]], { i , 1, m − 1}]]

]

(∗Construct the transition matrix for cost m and state−space size nStates∗)
m = 2;
nStates = 2ˆ10;
mat = computeMat[Log2[nStates], m];

s = 2;
nIter = 1000;
survivalProb = computeP[Log2[nStates], m, s, Ceiling [Log2[nIter ]], mat]
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Solution: Linear system
An alternative approach to this problem is to consider a linear system for the variables pm(s) themselves.
I.e.

pm(s) =
∞∑
n=0

pnpm(s+ 2n −m), (3)

with pm(s) = 0 for s < m. The solution Eq. (3) is directly related to the stationary solution of Eqs. (1).

Computationally, as above, we have to put an upper bound on the state space
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