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Abstract

Bacteria can resist antibiotics by expressing enzymes that remove or deactivate drug molecules. Here, we study the effects
of gene expression stochasticity on efflux and enzymatic resistance. We construct an agent-based model that stochas-
tically simulates multiple biochemical processes in the cell and we observe the growth and survival dynamics of the cell
population. Resistance-enhancing mutations are introduced by varying parameters that control the enzyme expression
or efficacy. We find that stochastic gene expression can cause complex dynamics in terms of survival and extinction for
these mutants. Regulatory mutations, which augment the frequency and duration of resistance gene transcription, can
provide limited resistance by increasing mean expression. Structural mutations, which modify the enzyme or efflux
efficacy, provide most resistance by improving the binding affinity of the resistance protein to the antibiotic; increasing
the enzyme’s catalytic rate alone may contribute to resistance if drug binding is not rate limiting. Overall, we identify
conditions where regulatory mutations are selected over structural mutations, and vice versa. Our findings show that
stochastic gene expression is a key factor underlying efflux and enzymatic resistances and should be taken into consid-
eration in future antibiotic research.
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Introduction

Efflux pumps and drug-inactivating enzymes allow bacterial
cells to evade the damage caused by antibiotic drugs. Bacterial
pathogens with efflux and enzymatic resistances are ubiqui-
tous and often are serious public health concerns (Li et al.
2015; World Health Organization 2017). For instance, several
Gram-negative bacteria species with carbapenemase and
ESBL activities are listed as critical priority pathogens for re-
search and development of new antibiotics by the WHO
(World Health Organization 2017).

Studies to quantify antibiotic resistance are routinely per-
formed at the bacterial population level, that is, through
protocols such as minimum inhibitory concentration (MIC)
or time-kill curves. However, the action of the drug occurs
within the cell on the molecular level. Bridging these different
scales remains a challenge.

The action of antibiotic drugs usually involves small num-
bers of molecules and binding sites, such that intrinsic sto-
chasticity could have a significant effect on the dynamics. This
noise impacts how we interpret bacterial assays that extract
population-averaged behaviors, which normally ignore cell-
to-cell heterogeneity. A recent study has suggested that many
experimental phenomena, such as postantibiotic effects, can

be explained by these noisy within-cell dynamics (Abel Zur
Wiesch et al. 2015).

Another source of randomness is in the mechanism of
gene expression (Paulsson 2005). Transcription typically
occurs in bursts, a phenomenon often described by the so-
called two-state or telegraph model of gene expression
(Paulsson 2005; Lionnet and Singer 2012; Kumar et al.
2015). In this model, gene transcription switches stochasti-
cally between an active state with a constant rate of mRNA
production, and an inactive state without transcription.
Although certain genes may have complex transcription reg-
ulations, the two-state model is widely used when modeling
both prokaryotes and eukaryotes due to its simplicity
(Paulsson 2005). The duration of active and inactive states
can range from minutes to multiple cell generations (So et al.
2011; Lionnet and Singer 2012; Hammar et al. 2014). The
intrinsic stochasticity of gene expression is often the domi-
nant source of randomness for gene-product numbers, and
the separation of noise intensities has been used to perform
mathematical analysis of gene-expression systems (Lin and
Galla 2016). While the expression level of resistance enzymes
or efflux pumps generally correlates with the level of observed
phenotypic resistance (Zwart et al. 2018), the effects of sto-
chasticity on resistance remain unexplored.
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Enzymatic resistances can be enhanced by regulatory or
structural gain-of-function mutations, affecting the gene ex-
pression or the enzyme efficacy, respectively (Yang et al. 2003;
H€andel et al. 2014; Berrazeg et al. 2015; Blair et al. 2015). Both
regulatory and structural mutations have been described for a
number of antibiotic resistances (Toprak et al. 2012; H€andel
et al. 2014; Berrazeg et al. 2015). However, the selective con-
ditions that favor one type of mutation over the other have
not been fully explored.

Here, we provide a computational model that investigates
the effects of stochastic gene expression on resistance and
resistance evolution. Our model describes the dynamics of
within-cell processes of the drug–target–efflux system and
accounts for stochasticity in transcription and translation,
as well as drug diffusion, binding, and removal. Using this
model, we consider regulatory and structural resistance
mutations to study their behavior on the molecular, cellular,
and population levels. Our goal is to explore how stochastic
gene expression influences the survival and extinction of dif-
ferent types of resistance mutations under antibiotic
treatments.

Model

Overview
We model a population of elongating and dividing cells in a
boundless environment with an antimicrobial drug. The drug
molecules can diffuse across cell membranes, and they influ-
ence the cell’s death rate by binding to drug-specific targets. A
drug efflux system, which is subject to stochastic gene expres-
sion, removes drug molecules from the cell. We focus on
mutations that affect this system, either through regulatory
effects or changes to the enzymatic efficacy.

Each cell is modeled as an independent agent, such
that there are no between-cell interactions. To uphold
independence, we assume a constant concentration of
drug outside the cell. Spatial effects are ignored. The
within-cell model takes the following processes into ac-
count: cell elongation and division; intracellular produc-
tion of drug–target protein; entry of drug molecules into
the cell; the interaction of target proteins with drugs and
subsequent cell death due to antibiotics; and the tran-
scription, translation, and enzymatic activity of the
resistance-mediating proteins. From here on, we refer to
the resistance-mediating protein as efflux protein, as it
can remove drug molecules from the cell either as an
efflux pump or drug-inactivation enzymes.

Each cell is described by seven discrete variables (shown in
table 1), which are updated stochastically using the adaptive
tau-leaping Gillespie algorithm as implemented in the adap-
tive tau package in R (Cao et al. 2007). This is an approxima-
tion of the full stochastic simulation algorithm (Gillespie
1977). The interactions between the within-cell variables
can be seen in the model schematic in figure 1 and are de-
scribed in detail below. In addition, we model the elongation
of the cell deterministically. All cell parameter values are
reported in supplementary table S2, Supplementary
Material online.

Cell Physiology and Division
The cells we model here are Escherichia coli. We assume that
the cells are cylindrical with cross-sectional diameter d. A
newly divided cell has length ‘0. The cell elongates exponen-
tially until it reaches twice its length at birth (Campos et al.
2014), which is achieved in time interval tG. At a time t after
birth, the cell length (‘), surface area (A), and volume (V)
satisfy:

‘ðtÞ ¼ ‘02t=tG ;

AðtÞ ¼ pd‘ðtÞ þ 1

2
pd2;

VðtÞ ¼ 1

4
pd2‘ðtÞ:

(1)

For each cell, a small amount of zero-expectation Gaussian
noise (SD ¼ 5%) is added to the mean generation time
(tG ! N½tG; ð0:05tGÞ2�) to desynchronize cell divisions and
to increase cell-to-cell heterogeneity. Division happens instan-
taneously once the cell reaches twice its birth length, and
produces two equal-length daughter cells. All variables in ta-
ble 1 are divided binomially between the two daughter cells
upon cell division, with the exception of the DNA activity DE,
which is directly inherited by both daughters.

Target Production
The target proteins usually fulfill essential functions in the cell,
such as ribosomal subunits, RNA polymerase, DNA gyrase, and
cell-wall components (Andersson and Hughes 2010). The
numbers per cell of several targets have been well-characterized
and used for computational studies (Abel Zur Wiesch et al.
2015). The intracellular concentrations of these essential pro-
teins may impact the cell’s growth, for instance as in the case
with ribosomes (Greulich et al. 2015). Therefore, we assume
that these target proteins are subject to various intracellular
regulations that maintain a stable and optimal concentration
within the cell. This assumption is consistent with previous
findings showing essential genes have low protein-expression
noise (Silander et al. 2012). In the model, this is achieved
through constant production of targets over the duration of
the cell’s life. The production rate C is chosen such that, on an
average, the number of targets doubles in a generation. That is,
PTðtGÞ ¼ PTð0Þ þ CtG ¼ 2PTð0Þ, such that:

C ¼ PTð0Þ=tG: (2)

As the half-life of bacterial proteins is usually on the scale of
multiple hours (Larrabee et al. 1980), we neglect protein

Table 1. Within-Cell Variables.

Variable Description

/ Free drug molecules in cell
PT Number of unbound targets
hT Drug–target bound state
DE Expression activity of efflux gene (0 or 1)
ME mRNA transcribed by efflux gene
PE Efflux products translated from mRNA
hE Drug–efflux bound state
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degradation as it is relatively insignificant to dilution-by-cell
division.

Efflux Production
The transcription and translation of efflux proteins are explic-
itly modeled: we expect the expression of these nonessential
genes to be more stochastic than that of the drug targets. The
gene activity switches on(off) with a fixed rate COn(COff ),
and therefore follows the telegraph process of gene expres-
sion (van Kampen 2007). Once the gene is activated
(DE ¼ 1), mRNA is transcribed with a constant rate s. The
mRNA molecules degrade with rate c. On an average, b
proteins are translated during the lifetime of each mRNA
molecule. As above, we assume that these proteins do not
decay but are diluted only by cell division. Given that these
processes are intrinsically stochastic, a brief period of gene
activation may not always produce efflux mRNA and/or
protein.

Drug Diffusion, Interaction, and Efflux
The antibiotic drug outside of the cells is kept at a constant
concentration cout. The drug molecules diffuse through the
cell envelope bidirectionally with a fixed diffusion rate r. The
overall diffusion rate is proportional to the surface area of the
cell, A(t). We stochastically model Fick’s law of diffusion for
the bidirectional movement, such that transport is driven by
a concentration gradient.

Once a drug molecule has entered the cell, it can either
diffuse out, bind to its specific target, or be captured by an
efflux protein. These binding events result in the formation of
a drug–protein bound state. Binding occurs with the forward
rate constant kf, reflecting the binding affinity of target and
efflux proteins. The actual binding rate also depends on the
concentration of the drug and the proteins that interact

inside the cell. Drug binding to target and efflux are both
considered reversible unless stated otherwise, and the bound
states dissociate with backward rate kb. This event releases
both the drug molecule and the protein into the cell. To
compete efficiently with targets, efflux proteins should have
at least the same or higher drug-binding rates than target
proteins. Therefore, we set the basal efflux binding rate to be
the same as that of targets, making them indistinguishable to
the drug. The efflux protein has the capacity to remove the
drug molecule once bound, through catalysis or transport,
and this happens with rate kcat.

All of the above reactions are summarized in table 2.

Cell Death and MIC Fraction
Here, we consider bactericidal drugs that introduce a drug-
dependent death rate for each cell. Therefore, the presence of
drug has no impact on the cell generation time. We combine
two previously published models to implement a realistic
death mechanism: the drug-induced death rate,
logð10ÞdðqÞ, is an increasing function of the fraction of
bound targets, q (Abel Zur Wiesch et al. 2015), but has a
maximum value (Regoes et al. 2004). Under these conditions,
the number of cells n follows nðtÞ ¼ 10½wmax�dðqÞ�tnð0Þ, where
wmax is the population growth rate in the absence of antibi-
otic. The fraction of bound targets, q, also correlates with the
concentration of bound targets. The death rate should satisfy
the following criteria:

(1) dð0Þ ¼ 0: In the absence of antibiotics the death rate is
zero;

(2) dðqMICÞ ¼ wmax: When the external drug concentra-
tion is 1�MIC—which is the minimum concentration
at which no bacterial growth is observed, the fraction
of bound targets is given as qMIC. The death rate at this

Target

Cell 
death

Drug removal / catalysis

Protein Protein

mRNA

DNA

Drug

Bound 
state

Bound 
state

FIG. 1. Model schematic. Each arrow corresponds to a discrete reaction, as described below. Dashed arrows indicate that drug–protein bound
states may dissociate (depending on the drug used). Efflux proteins are translated from mRNA, which in turn is transcribed from DNA. The DNA
can be active (blue) or inactive (gray), and can switch between these two states. Not shown is the constant production of target proteins, which we
assume are constitutively expressed.
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value should equal the maximum growth rate in the
absence of antibiotic (wmax), such that the net growth
rate is zero;

(3) dð1Þ ¼ wmax � wmin: When all targets are bound, the
death rate is maximal. The net growth rate is then
wmin, which is the minimum measured population
growth rate.

In our model, the death rate takes the sigmoidal form as in
Regoes et al. (2004),

dðqÞ ¼
A q

qMIC

� �j

q
qMIC

� �j
� B

; with q ¼ hT

PT þ hT
; (3)

where the constants A and B are chosen such that the above
criteria are satisfied, that is,

A ¼ wmaxðwmax � wminÞðq�j
MIC � 1Þ

ðwmaxq
�j
MIC � ðwmax � wminÞ

; (4)

B ¼ wminq
�j
MIC

wmaxq
�j
MIC � ðwmax � wminÞ

: (5)

The values of wmax and wmin have been determined for
multiple antibiotic compounds (Regoes et al. 2004). Finally,
the shape parameter j in equation (3) determines the steep-
ness of the sigmoidal response. For j!1, we recover the
step function where death only occurs if the fraction of
bound targets is greater than a threshold (in this case, the
threshold would be qMIC).

Through equation (3), we can relate the within-cell param-
eter qMIC to the externally measured (population level) MIC
of the drug. Empirically, MIC is determined as the lowest drug
concentration to prevent a small bacterial inoculum from
proliferating overnight into visible density, sometimes quan-
tified specifically as > 90% reduction in growth rate com-
pared with a drug-free control (Arthington-Skaggs et al.
2002; Tunney et al. 2004; Toprak et al. 2012). Alternatively,
one could define the MIC as the concentration of drug at
which the net growth rate is zero after a given time period;
this is referred to as zMIC by Regoes et al. (2004). In the
Supplementary Material online, we measure these quantities
in simulations and compare them with different lineage

survival probability thresholds following overnight experi-
ments, such as IC50 (50% lineage survival), IC90 (10% lineage
survival), and IC99 (1% lineage survival) (supplementary fig.
S1, Supplementary Material online). The reason for using lin-
eage survival probability is its computational efficiency com-
pared with computing population growth rates. We find that
IC90 is a suitable measure of MIC which correlates well with
the zMIC drug concentration.

We determined values of qMIC by simulating lineages
emerging from individual wild-type (WT) cells that grow
for 20 h in a constant environment with cout ¼ 1�MIC.
This time interval is comparable with standard overnight
MIC experiments (Regoes et al. 2004). We then screened
for qMIC, defined as the highest value of bound target fraction
where >90% of the progenitor cells and their lineages be-
come extinct. This screening process is highlighted in supple-
mentary figure S2, Supplementary Material online, for the
drug ciprofloxacin, from which we find an MIC fraction of
8.1%. Although this number may seem low, it could poten-
tially be explained by the drug mechanism: ciprofloxacin
binds to DNA-bound gyrases and fragments the bacterial
chromosome via DNA double-strand breaks (Kampranis
and Maxwell 1998; Tamayo et al. 2009). Given that each E.
coli cell has �300 DNA-bound gyrases (Chong et al. 2014),
this MIC fraction suggests that a cell is likely to die when its
chromosome is fragmented by over 20 simultaneous double-
strand breaks, which seems plausible. The drug-specific
parameters are listed in supplementary table S3,
Supplementary Material online, and we repeat this screening
procedure for rifampicin (supplementary fig. S3,
Supplementary Material online).

Simulation Algorithm
To simulate a population of cells over multiple generations,
we use the following algorithm:

(1) Assign each initial cell a unique set of parameter values;
(2) Identify the cell with the earliest birth time;
(3) Run the adaptive tau-leaping simulation algorithm for

this cell until the cell dies, or it reaches its predefined
generation time;

(4) If the cell survived, perform cell division to create two
new daughters;

Table 2. Within-Cell Reactions.

Reaction Rate Description

1fiPT C Constant production of targets
1fiDE COnð1� DEÞ Switch on efflux gene
DEfi1 COff DE Switch off efflux gene
DEfiDE þME sDE Transcription of efflux mRNA
MEfi1 cME Decay of efflux mRNA
MEfiME þ PE cbME Translation of efflux product
1fi/ rAðtÞcout Influx of free drug into cell
/fi1 rAðtÞ/=VðtÞ Loss of free drug from cell
/þ PTfihT kf PT/=VðtÞ Drug–target binding
hTfi/þ PT kbhT Dissociation of drug–target bound state
/þ PEfihE kf PE/=VðtÞ Drug–efflux binding
hEfi/þ PE kbhE Dissociation of drug–efflux bound state
hEfiPE kcathE Catalysis/removal of drug
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(5) Repeat from (2), until the experiment ends, no cells
remain, or the number of cells is large enough that we
can assume survival of the population for the duration
of the experiment (200 unless otherwise stated).

We also describe the within-cell behavior by a system of
ODEs, as shown in the Supplementary Material online. We
refer to these equations as the mean-field solution, as it does
not take into account any stochasticity, and instead reflects
the average dynamics of an infinite number of cells.

Model Behavior
To test the validity of our model, we checked the distribution
of target and efflux molecules across a large ensemble of WT
cells growing in the absence of antibiotics (supplementary fig.
S4, Supplementary Material online). We found that the fre-
quency of cells with active efflux DNA agrees with the pre-
diction of the telegraph process (�2:5%), while the average
number of efflux mRNA (�0:04) and efflux proteins (�4) per
cell are within experimentally reported ranges (Cai et al. 2006;
Taniguchi et al. 2010; Moran et al. 2013). The efflux protein
copy number also follows a negative-binomial distribution, as
predicted by the theory of their bursty dynamics (Paulsson
and Ehrenberg 2000). Finally, the number of target proteins
per cell is normally distributed, which is expected given its
constant production rate.

In figure 2, we show an example trajectory of the intracel-
lular model variables in the absence and presence of an an-
tibiotic (ciprofloxacin). Starting from a single WT cell, we
track only one daughter cell after each division. After six
generations, we instate an external drug concentration,
such that the drug can freely diffuse into the cell (fig. 2A).
The mean-field equations closely approximate the number of
constantly produced intracellular drug targets (fig. 2B). The
number and fraction of drug-bound targets is also well ap-
proximated in the mean-field limit (fig. 2C and D). However,
the bursty dynamics of the efflux system are not well cap-
tured by the deterministic approximation (fig. 2E–H). Here, a
piecewise deterministic Markov process, which accounts for
the gene-expression noise, would be a more appropriate ap-
proximation for this system (Lin and Galla 2016).

Although cells could accumulate multiple efflux proteins
during the period of gene activity (fig. 2G), we did not observe
two or more drug-bound efflux proteins at the same time
(fig. 2H). The lack of multiple drug-bound efflux proteins could
be caused by two factors: the binding rate of drug is slow
enough to disallow near-simultaneous formation of multiple
drug–efflux bound states, while the catalysis rate is high
enough that any efflux-bound drug molecule is quickly
catalyzed. Put together, it shows that here the rate-limiting
factor for removing drugs by efflux is not the catalysis step, but
the drug-binding process (at least for this set of parameters).

Mutations
We consider seven classes of cells throughout this study:
knockout, WT, three types of regulatory mutants, and two
types of structural mutants. Knockout (KO) cells lack efflux
protein production. WT cells have the basal level of efflux

production. The effects of a mutation are characterized by a
multiplicative parameter l > 1. The three types of regulatory
mutants we consider are: REG-ON, which has an increased
rate of gene activation (COn ! lCOn); REG-OFF, which has
longer periods of active transcription by reducing the inacti-
vation rate (COff ! COff=l); and REG-BURST, which
increases the translation rate or protein burst size from
each translational event (b! lb). The two types of struc-
tural mutants include STRUCT-BIND with improved binding
affinity (kf ! lkf ) to drug molecules and STRUCT-CAT with
improved catalytic rates to break down drug molecules
(kcat ! lkcat). The mutant cells also carry a cost,
0 < � � 1, which is associated with their modified func-
tion. We assume this cost affects all metabolic processes in
the cell, leading to a longer generation time, as well as
slower translation. We therefore implement
C! ð1� �ÞC; b! ð1� �Þb, and htGi ! htGi=ð1� �Þ.
The KO cell type carries a negative cost, as we assume it grows
slightly faster for lacking efflux protein production
completely.

Results

Lineage Survival
We first simulate the survival probability of cell lineages when
faced with a constant concentration of ciprofloxacin for 20 h.
As well as considering different mutant classes, we also vary
the mutant effect parameter l. KO and WT classes are in-
cluded as controls.

Four classes of mutant show distinct survival probability
profiles (fig. 3). REG-BURST mutants share an almost-identical
profile to STRUCT-BIND, therefore the results for this class are
relegated to the Supplementary Material online (supplemen-
tary fig. S5, Supplementary Material online). REG-ON mutants
are more likely to survive at low drug concentrations (near
the WT MIC) than any other mutant class, but their survival
probabilities decline sharply with increasing drug concentra-
tions (fig. 3A). Death is more prevalent at low concentrations
for REG-OFF mutants when compared with REG-ON, but the
decrease in survival probability with concentration is slower
(fig. 3B). Ultimately, REG-ON and REG-OFF mutants are elim-
inated at similar concentrations. STRUCT-BIND mutants
(and also REG-BURST) have much lower survival probabilities
than regulatory mutants at low drug concentrations (fig. 3C).
However, a small fraction of STRUCT-BIND mutants can sur-
vive high drug concentrations beyond what the regulatory
mutants can survive. STRUCT-CAT mutants, on the other
hand, do not show any noticeable improvement in survival
probability compared with WT or KO (fig. 3D).

From figure 3, we can interpolate IC90 values (external
drug concentration at which lineage survival is 10%) for
each cell type. Both regulatory mutations (REG-ON and
REG-OFF) are characterized by successive increase in their
IC90 values with increasing mutant effect. At l ¼ 200, the
regulatory mutations have an IC90 value that is increased by
almost 2-fold, which is comparable with the measured 3-fold
increase in MIC for a regulatory mutation in acrR (Marcusson
et al. 2009). STRUCT-BIND mutants show a small increase in
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IC50, but significant increase in IC90 with increased binding
rate, reaching 4.5-fold increase at l ¼ 200. STRUCT-CAT has
slightly lower IC values than WT, due to fitness cost of resis-
tance and no obvious benefit of increasing the rate of catal-
ysis. Conversely, KO has slightly higher IC values than WT due
to its small fitness advantage. The IC90 values, as well as IC50
values, for all cells and mutant effect values are reported in
supplementary table S4, Supplementary Material online.

For the cell lineages that became extinct in figure 3, we
looked at their extinction times (supplementary fig. S6,
Supplementary Material online). Like the WT and KO cell
types, the structural mutants and REG-BURST have their
peak mean extinction time near the WT MIC. If extinction
occurs at sub-MIC concentrations (which is a rare event, as

shown in fig. 3), it is most likely to happen at the beginning of
the simulation when cell numbers are small. At 1�MIC, the
extinction time diverges as death rate equals growth rate at
this drug concentration (so that the expected lineage lifetime
becomes infinite). As the drug concentration increases be-
yond the MIC, more drug diffuses into the cells and the death
rate increases, leading to faster extinction of the cell lineages.
Compared with WT and KO, both REG-ON and REG-OFF
mutants show a shift of the peak extinction time toward
higher concentrations with larger mutational effects. This
corresponds to the shift in their respective IC90 values.
Finally, we note that the STRUCT-BIND lineages of cells
show a broad distribution (large variance) of extinction times
at high drug doses.
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FIG. 2. Intracellular variables in the absence (white background) and presence (gray background) of ciprofloxacin. Cell generations are distin-
guished by alternating line colors. Solid gray lines show the expected values based on mean-field solutions (supplementary eq. S1, Supplementary
Material online). The external drug concentration is set to zero for the first six generations, and then to cout ¼ 1�MIC. The tracked cell lineage died
after �200 min. The panels show: (A) number of free intracellular drug molecules; (B and C) number of free and drug-bound target proteins,
respectively; (D) fraction of target proteins that are bound by the drug; (E) stochastic expression of the efflux gene; (F) number of efflux mRNA in
the cell; and (G and H) number of free and drug-bound efflux proteins, respectively. Model parameters are listed in supplementary tables S2 and S3,
Supplementary Material online, but we double the DNA activation rate COn to more clearly illustrate the stochastic gene expression dynamics in a
shorter time window.
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Combining the data on survival probability and extinction
times, our results suggest that REG-ON mutations provide
intermediate but homogeneous resistance. This is
characterized by the high survival probability at low drug
concentrations, which declines quickly as the drug concen-
trations increase until all cells eventually die. Resistance result-
ing from a REG-OFF mutation, however, seems
heterogeneous. This is characterized by prominent deaths
even at low concentrations but with some cell lines surviving
through intermediate drug doses. The heterogeneity is even
more pronounced in the STRUCT-BIND mutants: the low
extinction times show that some cells are dying early, but
the continued survival through intermediate and high doses
suggest that a fraction of the cells is highly resistant. For
STRUCT-BIND, the extreme resistance heterogeneity should
be the combined result of low but highly stochastic gene
expression and elevated binding rates of the resistance en-
zyme, such that the few cells with copies of the improved
efflux protein are highly protected.

Growth Rates
An alternative measure of mutant performance is through
their population-level growth rates across different drug con-
centrations. As well as measuring the level of resistance con-
ferred, these results can be directly compared with empirical
observations. Following the protocol of Regoes et al. (2004),
we simulated populations of cells for a short duration and
counted the number of live cells at 10-min intervals, before
extracting the net population growth rate (fig. 4).

Both regulatory mutants show similar dose–response pro-
files, which gives no indication of the differences in their lin-
eage survival probability. STRUCT-BIND mutants, however,
generally maintain a higher net growth rate under high drug
pressure when compared with the other cells types. This is in
agreement with figure 3, where a few cell lineages are able to
proliferate at these high treatment intensities. STRUCT-CAT,
WT, and KO cells show the classical sigmoidal dose response,
and the WT dose–response curve agrees well with the data
reported by Regoes et al. (2004) (fig. 4E).
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FIG. 3. The survival probability of the different mutant classes across increasing concentrations of ciprofloxacin. Drug concentration is measured
relative to the wild-type MIC. Each data point is the mean of 1,000 individual simulations, with each simulation starting from one individual cell of
the respective mutant class. Each simulation ends when either the population size reaches 200 cells (at which point extinction is extremely
unlikely), all cells die, or we reach the end of the experiment at t¼ 1,200 min. Survival probability indicates the fraction of simulations with more
than zero live cells. (A–D) regulatory and structural mutants; (E and F) WT and KO are included as controls.
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Heterogeneity and Resistance
The number of efflux proteins per cell in REG-ON and REG-
OFF mutants are nearly identical in mean for a given muta-
tion effect l (fig. 5). However, these mutant classes have very
different distributions of efflux protein number across the
population. For REG-ON mutants, the protein number dis-
tribution is unimodal such that cells are more homogeneous;
with frequent transcription bursts (e.g., at l¼ 50 and 200) all
cells produce some efflux proteins. REG-OFF mutants, in con-
trast, display a bimodal distribution of protein number: A
large fraction of cells within the population do not produce
any efflux protein, while some produce more than the corre-
sponding REG-ON mutant. This is the cause of REG-OFF cell
death even at low drug concentrations, but with some sur-
vival at intermediate doses.

Overall, regulatory mutations only provide limited resis-
tance. For REG-ON and REG-OFF with 200� mutational
effects, transcription is active for �80% of the time.
Therefore, resistance cannot be improved significantly by
augmenting the transcription dynamics beyond this level.
Further improvements in resistance then rely on increasing
the translation rate (resulting in more proteins per mRNA) or
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FIG. 4. Population growth rates during the 3 h of antibiotic exposure. For each mutant class and effect level, we simulated a population of up to 100,000
cells, and recorded the number of live cells at 10-min intervals. From the corresponding time-kill curves (shown in supplementary fig. S7, Supplementary
Material online), we extracted the net growth rate as the linear regression coefficient between the base-10 logarithm of cell number and the sample
time, as described by Regoes et al. (2004). Horizontal dashed lines are the maximum and minimum growth rates, wmax and wmin. (A–D) regulatory and
structural mutants; (E and F) WT and KO are included as controls. The dashed curve in panel (E) is the dose–response curve from Regoes et al. (2004).
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tracking only a single cell following each division event. Numbers are
recorded immediately after cell division.
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by improving the efficacy of the efflux protein itself. This is
consistent with previous findings showing that resistance pro-
vided by overexpression is limited (Yang et al. 2003; Toprak
et al. 2012).

For STRUCT-BIND mutants, the efflux protein number
distribution is very similar to that of the WT as there are
no changes in expression (apart from the small cost of car-
rying the mutation). Therefore, the majority of STRUCT-BIND
cells in a population contain no efflux protein. However, those
cells that do contain efflux proteins have a high level of re-
sistance, due to the high efficacy of these proteins. This is the
source of heterogeneity in the STRUCT-BIND mutant
population.

To investigate this further, we consider the survival for a
STRUCT-BIND mutant, but with different levels of gene ex-
pression stochasticity (fig. 6). Concretely, we increase the fre-
quency of gene activation (COn ! aCOn for a > 1), and
correspondingly decrease the efflux protein translation rate
cb! cb=a. In this way, we maintain the mean number of
efflux proteins per cell (fig. 6A) but alter the expression noise.

By reducing the gene expression noise (larger a), we note
an increased IC50 but decreased IC90 (fig. 6B), as the survival
profile now resembles that of REG-ON mutants (see fig. 3A).
With reduced expression noise, the efflux protein number in
cells becomes more uniform and cells with extreme protein
abundances disappear, making resistance homogeneous
across the cell populations. Overall, this shows that while
noise control reduces the amount of drugs needed to inhibit
the cells, the antibacterial effect also diminishes when drug
concentrations fall below the MIC.

Another source of heterogeneity stems from the partition-
ing of proteins at cell division. Our model assumes efflux
proteins are binomially distributed between two daughter
cells, and so far we have only considered the symmetrical
case with binomial parameter P¼ 0.5. It has been previously

shown, however, that biased partitioning for efflux pumps
exists and could cause long-lasting phenotypic heterogene-
ity (Bergmiller et al. 2017). To check the effects of partition-
ing bias, we varied the probability parameter P of the
binomial distribution to favor one daughter cell with
more efflux proteins at division (supplementary fig. S8,
Supplementary Material online). Among WT lineages,
IC90 is unaffected since most cells have no efflux proteins,
while a few cells have some with low efficacy. In REG-ON
mutants, however, we observe a significant increase in the
lineage survival probability (IC90), as one cell can now ac-
cumulate a significant number of efflux proteins. In the
STRUCT-BIND mutants, one cell in the lineage will accumu-
late highly effective efflux proteins, making it into a super-
resistant cell and hence increasing the IC90. These results
initially carry across to zMIC as determined from growth
rate measurements—increasing the efflux distribution bias
results in a higher zMIC. However, in the most extreme case
(P¼ 1) where only one daughter receives all the efflux pro-
tein, the STRUCT-BIND mutant shows a decreased zMIC
measurement. Here, at drug concentrations above the WT-
MIC, only one cell maintains the resistance from generation
to generation, and hence the maximum growth rate is zero.
Our results therefore suggest that there is an optimum
strategy to invest more in the fitness of one daughter which
maximizes the resistance of the population. This is not seen
in the REG-ON mutant as almost all cells are producing
efflux mRNA and proteins frequently. REG-ON daughter
cells that inherited no efflux protein could replenish their
resistance rapidly and survive the antibiotic, thereby con-
tributing to population growth.

Although it is commonly accepted that increased mean
expression of resistance enzymes can enhance resistance
(Zwart et al. 2018), our results suggest that expression noise
is also important for the population-level dynamics.
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FIG. 6. Controlling gene expression stochasticity in STRUCT-BIND mutants. (A) Efflux protein number distributions across 10,000 cells with
increased gene activation rate COn and decreased translation rate cb. Solid black bars are the mean number of efflux protein per cell. (B) Survival
probability of STRUCT-BIND mutants with effect l¼ 50, with varying expression noise (a 2 f1; 2; 8; 32g, see main text). Colors correspond to the
regulatory noise in panel (A). Simulations are performed as in figure 3.
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Survival after Antibiotic Pulse
The survival and extinction time properties of the different
mutants are expected to affect the outcome of pulsed anti-
biotic treatment, which reflects the situation in a patient
where drugs are not administered in a manner that maintains
a constant concentration. Therefore, we simulated pulsed
treatments where cells are exposed to a one-time dose of
antibiotic for a limited time period. For simplicity, the drug
dose is expressed as a step-function without more-detailed
pharmacokinetics. We then measured the survival probability
for each mutant class across different treatment durations
and concentrations (fig. 7). This survival probability can also
be interpreted as the genetic diversity, as it measures the

fraction of unique lineages which survive the pulsed
treatment.

REG-ON mutants have the highest survival probability at
low drug concentrations (cout � 2�MIC) or with brief drug
pulses (e.g., t¼ 30 min), as shown in figure 7A. This is due to
their long extinction times that allow regulatory mutants to
outlast drug concentrations beyond their IC90. STRUCT-
BIND cells survive at higher concentrations with long drug
pulses (fig. 7B), consistent with their high IC90 values. REG-
OFF mutants perform similarly to REG-ON mutants, while
STRUCT-CAT, KO, and WT cells show low levels of survival
(supplementary fig. S9, Supplementary Material online).

Systematic Analysis
So far, we find that STRUCT-BIND mutations provide most
resistance, followed by REG-ON. STRUCT-CAT, however, do
not increase the resistance against ciprofloxacin. For beta-
lactams, it has been shown in experiments that increasing
kcat provides a high level of resistance (Knies et al. 2017;
Palzkill 2018). To check whether our results hold true for
other conditions, we performed a systematic grid sampling
of the model parameter space. Specifically, we vary six model
parameters: binding rate, catalysis rate, diffusion rate, number
of targets, number of efflux proteins, and number of drug
molecules per cell at MIC, constructing 729 unique parameter
combinations. For each of these, we consider the WT cell, as
well as the REG-ON, STRUCT-BIND, and STRUCT-CAT
mutants with an effect of l¼ 200. The performance of
each mutant class is quantified as their ability to increase
the IC90 of the cell population relative to the WT cell. Full
details of this procedure can be found in the Supplementary
Material online.

Through this analysis, we find that the largest effect muta-
tions are STRUCT-BIND, but on an average REG-ON outper-
form the other mutants (fig. 8). REG-ON and STRUCT-BIND
mutants frequently provide increases of >10-fold in IC90,
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FIG. 7. Survival probability after exposure to a pulse of antibiotics for (A) REG-ON and (B) STRUCT-BIND mutants. The survival probability is
indicated by color scale. The drug dose is applied as a step-function with constant external drug concentration during the pulse, and cout ¼ 0 for
the remainder of the experiment up to t¼ 1,200 min. Simulations are performed as in figure 3. The mutant effect is l ¼ 200. Further results for the
other cell types can be found in supplementary figure S9, Supplementary Material online.
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FIG. 8. Distribution of mutant efficacy following systematic parameter
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increase in IC90 for each mutant across all parameter combinations.
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founder cells, as described in figure 3.
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while STRUCT-BIND mutants could even reach >100-fold in
some circumstances. STRUCT-CAT mutants have little-to-no
effect most of the time, but it is possible for them to have up
to 10-fold advantage over the WT. Concretely, STRUCT-CAT
mutants perform better when: 1) the binding rate is high; 2)
the average number of efflux pumps per cell is high; 3) the
number of intracellular drug molecules are high; and 4) the
WT catalysis rate is low (supplementary fig. S10,
Supplementary Material online). In all four scenarios, catalysis
becomes the rate-limiting step in the efflux of drug from the
cell. In summary, while STRUCT-CAT mutations could en-
hance resistance, their contributions are fairly limited com-
pared with STRUCT-BIND and REG-ON.

Discussion
Efflux pumps and drug-inactivating enzymes cause some of
the most important clinical resistances (Li et al. 2015; World
Health Organization 2017). Overexpression of efflux pumps is
also associated with virulence and enhanced mutation rates
(Wang-Kan et al. 2017; El Meouche and Dunlop 2018).
Although stochasticity is inherent to gene expression and
underlies vital cell functions, its effects on antibiotic resistance
have not been systematically addressed.

To study this, we constructed an efficient agent-based
model that bridges the scales between within-cell molecular
processes and population-level dynamics. We considered dif-
ferent classes of regulatory and structural mutations that en-
hance resistance, and evaluated their performances under
different drug pressures. Previous models have utilized
drug–target binding dynamics to help explain population-
level phenomena such as persistence (Abel Zur Wiesch
et al. 2015). Our model extends this approach by adding
enzymatic reactions. Furthermore, unlike previous determin-
istic models, our stochastic approach explicitly captures the
noise at each step of the relevant biological processes, allow-
ing us to dissect the effects of each source of noise on bac-
terial behavior.

Regulatory mutations that increase either transcription
frequency (REG-ON) or duration (REG-OFF) by the same
factor have the same mean expression. Thus, a mean-field
deterministic model would predict equal levels of resistance.
However, increasing the duration of transcription does not
reduce the noise of gene activation, leading to a subpopula-
tion of cells with little or no resistance enzymes which remain
drug-susceptible. This is not observed in the mutants with
frequent gene activation, which instead show a homogeneous
population of cells with equal resistance.

Structural mutations improve the biochemical properties
of the resistance enzyme by increasing the binding rate to the
drug (STRUCT-BIND) or the catalysis rate (STRUCT-CAT).
While structural mutations may influence both binding and
catalysis simultaneously, here, we disentangle them to eluci-
date their relative importance in resistance. We find that
improving the binding rate has a significant effect on resis-
tance, while improving the catalysis rate may have no effect
(at least for our parametrization of E. coli exposed to
ciprofloxacin).

To understand the robustness of these conclusions, we
systematically investigated a large range of parameter space
taking into account different target, efflux, and drug dynam-
ics. Increasing resistance through faster catalysis (STRUCT-
CAT) is effective when the number of efflux enzymes is
greater than or equal to the number of targets, which may
be the case when considering beta-lactamase resistance
where increased catalytic rates have been detected (Knies
et al. 2017; Palzkill 2018) in mutants with large increases in
MIC (Hall 2002; Schenk et al. 2012). Furthermore, STRUCT-
CAT mutants perform better when the binding rate is high or
when the WT catalysis rate is low, such that catalysis is rate
limiting. Our findings, however, suggest that drug binding is
predominantly the rate-limiting step in the efflux of antibi-
otics from the cell.

In general, high regulatory noise results in heterogeneity in
phenotypic resistance whereas low noise results in homoge-
neous resistance. By controlling the gene-expression noise, we
show that noise reduction may facilitate bacterial inhibition
of mutants by reducing their IC90. At the same time, mutants
also have increased IC50, suggesting that drugs could be even
less efficient when falling into sub-MIC concentrations. This is
relevant for exploring the clinical potential of treatments
which modulate gene-expression noise. Such noise-
modulating chemicals have, for example, recently shown
promising effects on reactivating HIV from latency, a
process that relies on high gene expression noise (Dar et al.
2014). The success of HIV-latency modulators has provided
a new concept in drug discovery and we envision that a
similar approach may be tested to regulate resistance in
bacteria.

In clinical antibiotic treatments, the drug concentration is
not maintained at a consistently high level, as opposed to
laboratory experiments. Here, we assume a constant drug
scenario as a minimalist approach for two reasons: 1) com-
putational efficiency as cells can be independently simulated;
and 2) if the cells can modify the drug concentration, then we
would also have to account for spatial variation of this con-
centration, which in turn would require biomechanical mod-
els of cell division and movement. The implementation of
such a complex model would cloud the inferences we make
from cellular stochasticity. On the other hand, the constant-
concentration assumption is only valid when molecule num-
bers are high and when local fluctuations in the drug con-
centration are negligible. The latter may not apply if
pharmacokinetics exist or if drugs are deactivated by the
bacteria. One specific scenario that makes our assumption
valid is if we assume the media is well-mixed: that is, the
diffusion speed of the drug in the media is much faster
than the diffusion across the cell membranes. If the volume
of media is much greater than the total volume of all cells in
the media, then the external drug concentration is approxi-
mately constant across the experiment. Further complica-
tions would be the release of drug upon cell lysis, which
again would not be a problem in the aforementioned large-
volume, high-density scenario.

While working with constant drug concentrations, we var-
ied the duration of the drug dose to study how pulsed
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treatments affect bacterial survival. This is relevant as the
mutant classes show different extinction times (supplemen-
tary fig. S6, Supplementary Material online), which could af-
fect treatment success. Regulatory mutants have long survival
times even at high concentrations, which leads to high sur-
vival probabilities as long as the drug is applied in a brief pulse.
Thus, regulatory mutants could be more clinically problem-
atic than structural mutants despite having lower IC90. This
outcome will not be reflected in standard experimental pro-
tocols based on constant concentrations such as MIC meas-
urements. Therefore, a comprehensive understanding of
mutant dynamics requires more detailed assessment meth-
ods for cell death and growth across different antibiotic
concentrations.

Our drug–target model is based on ciprofloxacin, gyrase,
and the AcrAB-TolC efflux pump. This system has the advan-
tage of relatively few drug targets per cell and drug that acts at
low concentrations, which reduces computation time. We
parametrized our model based on previous experimental find-
ings. It can accurately reproduce cell population dynamics un-
der various drug concentrations as well as within-cell protein
distributions under stochastic expression (fig. 4E and supple-
mentary fig. S4B, Supplementary Material online). We therefore
expect our model and its findings to be qualitatively robust.

Given that stochastic gene expression is a general mecha-
nism in cell biology, our findings may also offer insights into
general bacterial adaptation to changing environments. One
example is the evolutionary reproducibility of adaptation via
gain-of-function mutations: in certain biological systems, reg-
ulatory mutations seemingly take precedence over structural
mutations and vice versa (Toprak et al. 2012; Blank et al. 2014;
Lind et al. 2015). Here, we show that stochastic gene expres-
sion has temporal and heterogeneous effects on regulatory
versus structural mutants, which helps explain why certain
mutations could be advantageous.

In conclusion, the dynamics of gene expression could have
a strong impact on the efficacy, and therefore the evolution,
of resistance mutations. In particular, the intrinsic stochastic-
ity of gene expression is a crucial determinant of evolutionary
success. The framework we developed in this study now
opens further opportunities to assess the impact of stochastic
gene expression on bacterial adaptation, and the impact of
molecular biology on evolution by extension.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online. All code and generated data have been ar-
chived at https://doi.org/10.5281/zenodo.3375506.
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Supplementary Material
Stochastic gene expression influences the selection of antibiotic resistance

mutations

Lei Sun, Peter Ashcroft, Martin Ackermann, and Sebastian Bonhoe↵er

S.I Mean field model

From the reactions in Table 2 of the manuscript, we can construct a mean-field ordinary di↵er-

ential equation (ODE) model:

ṖT = �� kf
PT �

V (t)
+ kb✓T, (S1a)

ḊE = �On(1�DE)� �O↵DE, (S1b)

ṀE = ⌧DE � �ME, (S1c)

ṖE = �bME � kf
PE �

V (t)
+ (kb + kcat)✓E, (S1d)

�̇ = �A(t)


cout �

�

V (t)

�
� kf

(PT + PE)�

V (t)
+ kb(✓T + ✓E), (S1e)

✓̇T = kf
PT �

V (t)
� kb✓T, (S1f)

✓̇E = kf
PE �

V (t)
� (kb + kcat)✓E. (S1g)

For the behaviour shown in Fig. 2 of the manuscript, these equations are integrated until time

tG, after which the molecule numbers are halved to represent dilution due to cell division.

S.II Comparing MIC measurements

The population of cells roughly follows the growth law n(t) = n(0)10 t, where n(0) is the initial

population size and  is the log-10 growth rate. To find a population growth rate, we then solve

this equation for  , i.e.,

 =
log10[n(t)]� log10[n(0)]

t
. (S2)

If we measure a lineage extinction probability of X (say, 90%), then the maximum population

size at time t that we could observe is n(t) = (1 �X)n(0)10 maxt, where each of the surviving

lineages (1 � X) grow at the maximum rate. Likewise, the minimum population size with a

lineage extinction probability of X is n(t) = (1�X)n(0), i.e. each surviving lineage only has a

single cell remaining. We therefore have the following bounds for the growth rate:

log10(1�X)

t
<  <

log10(1�X)

t
+  max. (S3)

These bounds are highlighted in Supplementary Fig. S1A, from which we see that IC90 mea-

surements after one hour would overestimate the zMIC – instead the IC90 would correspond to

a negative net growth rate of the population. When measuring growth rates at later timepoints,

we can have correspondence between the IC90 and zMIC, while IC50 is likely to underestimate

the concentration which gives a net growth rate of zero.

To confirm the above findings, we compare the ICX values extracted from lineage survival

simulations with inhibitory concentrations as measured in growth rate simulations. From the

overnight lineage survival probability simulations, we interpolate IC50 (50% lineage survival),

IC90 (10% lineage survival), and IC99 (1% lineage survival). From the five hour growth rate
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simulations, we interpolate the drug concentrations at which  = 0.1 max (10% max growth

rate),  = 0.01 max (1% max growth rate), and  = 0 (zero growth, or zMIC). We measure the

growth rates at multiple timepoints to determine the observations are dependent on experiment

duration. In Supplementary Fig. S1B, we see that the inhibitory concentrations inferred from

growth rates converge to IC90 for the REG-ON, REG-OFF, STRUCT-CAT, WT and KO cell

types, and this convergence occurs within 3 hours. IC50, on the other hand, always underesti-

mates the true inhibitory concentration. For the STRUCT-BIND and REG-BURST mutants,

the inhibitory concentration interpolated from growth rates continually increases with time and

IC90 underestimates the zMIC. Therefore IC90 is a conservative estimate of the MIC of the

STRUCT-BIND and REG-BURST mutants. In summary, we find that IC90 is the most suitable

measure of MIC which generally correlates well with the zMIC drug concentration.

S.III Systematic simulations

Results in the manuscript are based on a single resistance mechanism, the AcrAB-TolC e✏ux

pump, providing resistance to a specific drug, ciprofloxacin. To shed more light on our results, we

conduct a systematic sweep of the parameter space to assess in which regimes di↵erent mutant

classes are advantageous, and what are the maximum levels of resistance that can be observed.

We consider all permutations of the parameters listed in the table below:

Table S1: Summary of parameter values. a Average values per generation. b Number of e✏ux
pumps is increased by increasing the mRNA burst size b (DNA activation/deactivation and
mRNA degradation rates kept constant). c Evaluated at 1⇥MIC.

Parameter Values
Binding rate (M-1s-1) 104, 105, 106

Catalysis rate (s-1) 10�4, 10�2, 10
Drug di↵usion rate (ms-1) 10�11, 10�10, 10�9

Number of targetsa 10, 102, 103

Number of e✏ux pumpsa,b 10, 102, 103

Number of drug moleculesa,c 10, 102, 103

The three values for each of the six parameters gives a total of 36 = 729 unique parameter

combinations. For each of these we consider the WT cell, as well as the REG-ON, STRUCT-

BIND, and STRUCT-CAT mutants with an e↵ect of µ = 200.

For each parameter combination, we need to determine the external drug concentration for

which the average number of drug molecules per WT cell corresponds to the value in the table

above. This concentration is then the MIC of that specific parameter combination. We then use

the mean-field model [Eq. (S1)] to calculate the average fraction of bound targets per cell, and

we assign this value as the MIC fraction, ⇢MIC. We set  = 3 throughout, and the remaining

parameters are the same as in Supplementary Table S2.

Concretely, for each parameter combination we do the following:

1. Load the basic model parameters, and modify the binding, catalysis, and di↵usion rates,

and the number of targets directly;

2. Set the rate of e✏ux mRNA transcription such that the average number per cell matches

the designated value;

3. Using these parameters, we integrate the mean-field equations for di↵erent external drug

concentrations, and solve for an external concentration which gives the average number of

drug molecules per cell as given in the table above;

2



4. We integrate the mean-field equations at this given concentration, and determine the MIC

fraction as the average fraction of bound targets.

With this procedure, each of the 729 combinations can be rapidly parametrised, although not

completely accurately. We then compute the IC90 values for the each of the 729⇥{WT ,REG-

ON, STRUCT-BIND, STRUCT-CAT} combinations, and extract the relative increase in IC90

of each of the mutant cells. The distribution of these mutational e↵ects are shown in Fig. 8 of

the manuscript.

To understand when each mutant is advantageous, we can compute the correlation between

each of the six parameters and the fold-increase in IC90. This is shown in Fig. S10. A general

trend across the three mutants is that resistance is highest when the baseline number of e✏ux

proteins is high, binding rates are fast and di↵usion rates are slow.
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S.IV Supplementary tables

Model parameters are given in Table S2, and drug-specific parameters are given in Table S3.

IC50 and IC90 values for ciprofloxacin treatments can be found in Table S4.

Table S2: Summary of parameter values. aWeighted average of reported values. btG =
log(2)/(log(10) max). cInactive time reported as 0.5–3,000 min. dActive time reported as 5–
60 min. eExamples range from 5–40.
Parameter Value Description
d 934 nm (Ouzounov et al., 2016) Diameter of cell (constant)
`0 3.4 µm (Campos et al., 2014) Length of newborn cell
 max 0.80 hour�1 (Regoes et al., 2004)a Maximum population growth rate
 min See Table S3 Minimum population growth rate
tG 22.5 min (Regoes et al., 2004)b Generation time
� See Eq. (2) of the manuscript Rate of target production
�On 0.2 min�1 (Lionnet and Singer, 2012; Hammar et al., 2014)c Rate of e✏ux gene activation
�O↵ 0.005 min�1 (Lionnet and Singer, 2012; Hammar et al., 2014)d Rate of e✏ux gene inactivation
⌧ 0.42 min�1 (Golding et al., 2005) Transcription rate
� 0.14 min�1(Bernstein et al., 2002) mRNA decay rate
b 22.5 (Thattai and Van Oudenaarden, 2001)e Burst size (products per mRNA)
cout See Table S3 Outside drug concentration
� See Table S3 Drug di↵usion rate
kf See Table S3 Binding rate of drug to target/e✏ux
kb See Table S3 Dissociation rate of drug–protein bound state
kcat See Table S3 Catalysis/removal rate of drug
MIC See Table S3 Minimum inhibitory concentration
⇢MIC See Table S3 MIC fraction of bound targets
 See Table S3 Shape parameter
µ > 1 Mutant e↵ect
⌫ 5% Cost of mutation

Table S3: Drug-specific parameters extracted from the literature. aValue is based on AcrB e✏ux
pump. bValues chosen according to Fig. S2. cValues chosen according to Fig. S3.
Drug Ciprofloxacin Rifampicin
Target DNA Gyrase RNA polymerase
Number of targets 300 (Chong et al., 2014; Stracy et al., 2019) 11,400 (Abel Zur Wiesch et al., 2015)

MIC (µgml�1) 0.03 (Regoes et al., 2004) 8.00 (Regoes et al., 2004)

Molar mass (gmol�1) 331.347 822.953
Di↵usion rate (m s�1) 2.0⇥ 10�11 (Abel Zur Wiesch et al., 2015) 2.0⇥ 10�11 (Abel Zur Wiesch et al., 2015)

Binding rate (M�1 s�1) 3.6⇥ 104 (Kampranis and Maxwell, 1998) 1.2⇥ 106 (Abel Zur Wiesch et al., 2015)

Dissociation rate (s�1) 3.0⇥ 10�4 (Kampranis and Maxwell, 1998) 1.2⇥ 10�3 (Abel Zur Wiesch et al., 2015)

Catalysis rate (s�1) 10.0 (Nagano and Nikaido, 2009)a 10.0 (Nagano and Nikaido, 2009)a

Min. pop. growth rate (h�1) �6.5 (Regoes et al., 2004) �4.3 (Regoes et al., 2004)

Shape () 2.0b 2.0c

⇢MIC 0.081b 0.294c
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Table S4: Profiles of resistance to ciprofloxacin. The IC50 and IC90 values are expressed as
multiples of the MIC for the WT strain. These values are extracted from Fig. 3 of the manuscript
using spline interpolation, and are defined as the drug concentrations at which 50% and 90% of
the lineages from the initial bacterial inoculum are killed.

Mutant class Mutant e↵ect (µ) IC50 IC90
WT 1 0.9 1.0
KO 1 0.9 1.1
REG-ON 2 0.8 1.0

10 1.0 1.2
50 1.3 1.5
200 1.5 1.8

REG-OFF 2 0.8 1.0
10 0.9 1.2
50 1.1 1.7
200 1.3 1.9

REG-BURST 2 0.8 1.0
10 0.9 1.2
50 1.1 2.0
200 1.2 4.5

STRUCT-BIND 2 0.8 1.0
10 0.9 1.2
50 1.0 2.0
200 1.2 4.6

STRUCT-CAT 2–200 0.8 0.9
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S.V Supplementary figures

Comparison of MIC measurements is shown in Supplementary Fig. S1. Parameter screening

for ciprofloxacin is shown in Supplementary Fig. S2. Parameter screening for rifampicin is

shown in Supplementary Fig. S3. Molecule distributions are shown in Supplementary Fig.

S4. Results for REG-BURST mutants are shown in Supplementary Fig. S5. Extinction times

are shown in Supplementary Fig. S6. Time-kill curves are shown in Supplementary Fig. S7.

Results of biasing the binomial distribution of e✏ux pumps is shown in Supplementary Fig. S8.

Survival probabilities following pulsed drug treatment are shown in Supplementary Fig. S9. The

correlation between parameter values and mutational e↵ects from the systematic grid sampling

is shown in Supplementary Fig. S10.
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Figure S1: Comparing MIC measurements from growth rate data and lineage survival probabil-
ities. A) Range of growth rates that can be measured for a given lineage survival probability.
IC50 has a survival probability of 50%, while IC90 has a survival probability of 10%. Curves
are predicted from Eq. (S3). Grey horizontal lines are  max (upper) and zero growth rate. B)
Comparison of inhibitory concentrations as determined by lineage survival (lines) or growth rates
(symbols). Here we use the parameters for ciprofloxacin. Lineage survival is measured after 1,200
minutes, while growth rates are computed as described in Fig. 4 of the manuscript.
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Figure S2: Parameter screening for ciprofloxacin. A) We calculate the survival probability for
1,000 lineages initiated from a single cell at 1⇥MIC while varying the MIC fraction of bound
targets (⇢MIC) and the shape parameter . B) From panel A we interpolate the value of ⇢MIC

which gives a survival probability of 10% (IC90). C) For each pair of  and ⇢MIC in panel
B, we simulate a population of 100,000 cells under di↵erent drug pressure for three hours, and
extract the net population growth rate. This can be compared with the maximum and minimum
reported rates (dashed horizontal lines), and the growth curve reported by Regoes et al. (2004)
(dashed curve). D) For each pair of  and ⇢MIC in panel B, we calculate the survival probability
of 1,000 lineages initiated from a single cell under di↵erent drug pressure. From this figure we
determine the shape parameter for the death rate of ciprofloxacin is  = 2 and the MIC fraction
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Figure S3: Parameter screening for rifampicin. A) We calculate the survival probability for 1,000
lineages initiated from a single cell at 1⇥MIC while varying the MIC fraction of bound targets
(⇢MIC) and the shape parameter . B) From panel A we interpolate the value of ⇢MIC which gives
a survival probability of 10% (IC90). C) For each pair of  and ⇢MIC in panel B, we simulate
a population of 100,000 cells under di↵erent drug pressure for three hours, and extract the net
population growth rate. This can be compared with the maximum and minimum reported rates
(dashed horizontal lines), and the growth curve reported by Regoes et al. (2004) (dashed curve).
D) For each pair of  and ⇢MIC in panel B, we calculate the survival probability of 1,000 lineages
initiated from a single cell under di↵erent drug pressure. From this figure we determine the shape
parameter for the death rate of rifampicin is  = 2 and the MIC fraction is ⇢MIC = 0.294.
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Figure S4: The distribution of e✏ux and target states across 10,000 cells immediately after cell
division. These are sampled after t = 1, 200 minutes in the absence of drugs. The panels show:
A) expression state of the e✏ux gene; B) distribution of e✏ux mRNA across the population of
cells; C) number of e✏ux proteins per cell, which fits to a negative binomial distribution (grey
line); D) number of target proteins (gyrase) per cell. Parameters are based on the targets of
ciprofloxacin, and can be found in Tables S2 and S3.
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Figure S5: The dynamics of the REG-BURST mutants are very similar to those of STRUCT-
BIND. Survival probability (A) and extinction times (B) of the REG-BURST mutants across
drug concentrations are calculated as in Fig. 3 of the manuscript and Fig. S6. Colour scale
indicates the mutant e↵ect (µ). C) The net population growth rates as computed in Fig. 4 of the
manuscript. D) Survival probability after exposure to a pulse of antibiotics for the REG-BURST
mutant with 200-fold e↵ect. The survival probability is indicated by colour scale. Simulations
are performed as in Fig. 7 of the manuscript and Fig. S9.
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Figure S6: Mean extinction times of lineages of the di↵erent mutant classes. These are extracted
from the same data as Fig. 3 of the manuscript. Error bars indicate the standard deviation of
the extinction times.
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Figure S7: Time-kill curves, from which the growth rates in Fig. 4 of the manuscript are
extracted. Here we only show mutant e↵ect parameters µ = 200 (for REG-ON, REG-OFF,
STRUCT-BIND, and STRUCT-CAT), and a subset of ciprofloxacin concentrations. Upper
dashed line is the projected growth trajectory in the absence of drug, based on the maximum
growth rate reported by Regoes et al. (2004). Lower dashed line is the trajectory if the growth
rate is reduced by 90% from its maximum value. Horizontal line represents the zero growth
scenario. Note that at very low drug concentrations, we reduced the initial size of the population
from 105 to ⇠ 104 due to the computational cost. This has no e↵ect on the measurement of
growth rates as the population size never approaches small numbers at these drug concentrations.
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Figure S8: Impact of varying the e✏ux bias distribution during cell division. The e✏ux proteins
(both bound and unbound) are distributed among the two daughter cells according to a binomial
distribution with parameter p, while remaining molecules are distributed with parameter p = 0.5.
To extract IC90 values, we compute the lineage survival probability of 1,000 initial cells over a
range of drug concentrations (cout 2 [0, 10]⇥MIC), mutant e↵ects (µ 2 [1, 200]), and e✏ux bias
parameters (p 2 [0.5, 1.0]), for t = 1, 200 minutes. For zMIC values, we simulated up to 100,000
initial cells and tracked the population size for t = 180 minutes over the similar parameter ranges
(cout 2 [10�1, 102]) before extracting the growth rates as in Fig. 4 of the manuscript.
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Figure S9: Survival probability after exposure to a pulse of antibiotics. The survival probability
is indicated by colour scale. The drug dose is applied as a step-function with constant external
drug concentration during the pulse, and cout = 0 for the remainder of the experiment up to
t = 1, 200 minutes. Simulations are performed as in Fig. 3 of the manuscript. The mutant e↵ect
is µ = 200.
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Figure S10: Correlation between parameter values and mutant e�cacy following systematic
parameter sampling. IC90 is measured for each of the 729 parameter combinations in WT, REG-
ON, STRUCT-BIND and STRUCT-CAT mutants with µ = 200. Values shown here are IC90
of the mutant divided by IC90 of the WT for each parameter combination. Linear correlations
are computed between log10-transformed parameter values and log10-transformed fold-increase
in IC90 for each cell type.
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