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Abstract

THE UNIVERSITY OF MANCHESTER

Doctor of Philosophy

The statistical physics of fixation and equilibration in individual-based

models by Peter Ashcroft, 2015

Individual-based models have been applied to study a broad spectrum of problems
across multiple disciplines, such as the spread of epidemics or the outcome of social
dilemma. They are used to investigate the macroscopic e↵ects that arise from the
microscopic dynamics of interacting individuals. Fixation describes the taking over
of the population by a single type of individual or species. It is a prominent feature
in the field of population genetics, which interprets many biological scenarios of evo-
lution. Equilibration describes the process of reaching a heterogeneous steady state.
In this thesis we analyse these macroscopic features through techniques derived from
statistical physics and the theory of stochastic processes.

Birth–death processes are used to describe the interaction of two types of individual
in a population, such as competing strains of bacteria. These interactions are often
specified using the framework of evolutionary game theory. The environment in which
the population evolves can have a crucial impact on selection. In systems where the
environment switches between multiple states we develop a general theory to calculate
the fixation time statistics of a mutant individual in a population of wild-types, as well
as the stationary distributions when mutations are present in the dynamics. In some
birth–death processes, and in particular those described by evolutionary game theory,
the mean fixation time contains only limited information. By diagonalising the master
equation that describes the process, we are able to obtain closed-form expressions for
the complete fixation time distributions.

Individual-based models can also be used to describe the accumulation of muta-
tions in a cell. This has important consequences for the initiation and progression of
cancer. We find that such systems exhibit metastable states in the dynamics, and we
can exploit the separation of timescales between relaxing to the quasi-stationary state
and reaching fixation to characterise these phenomena. In this scenario we employ the
WKB method to describe the population-level dynamics. Although this method has
been used to describe numerous stochastic processes, a clear and coherent description
is lacking in the literature. Through the use of multiple examples, including the afore-
mentioned cancer initiation model, we carefully explain the multitude of constructs
and equations that result from the application of this method

The analytical characterisation of the evolutionary dynamics that are observed
in these stochastic processes has resulted in a greater understanding of fixation and
equilibration. This thesis promotes the benefits of analytical, or even semi-analytical
methods, and on a more general level contributes toward a more complete understand-
ing of evolutionary processes.

7



Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

8



Copyright

(i) The author of this thesis (including any appendices and/or schedules to this

thesis) owns certain copyright or related rights in it (the “Copyright”) and s/he

has given The University of Manchester certain rights to use such Copyright,

including for administrative purposes.

(ii) Copies of this thesis, either in full or in extracts and whether in hard or

electronic copy, may be made only in accordance with the Copyright, Designs

and Patents Act 1988 (as amended) and regulations issued under it or, where

appropriate, in accordance with licensing agreements which the University has

from time to time. This page must form part of any such copies made.

(iii) The ownership of certain Copyright, patents, designs, trade marks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the thesis, for example graphs and tables (“Reproduc-

tions”), which may be described in this thesis, may not be owned by the

author and may be owned by third parties. Such Intellectual Property and

Reproductions cannot and must not be made available for use without the

prior written permission of the owner(s) of the relevant Intellectual Property

and/or Reproductions.

(iv) Further information on the conditions under which disclosure, publication

and commercialisation of this thesis, the Copyright and any Intellectual Prop-

erty and/or Reproductions described in it may take place is available in the

University IP Policy (see http://documents.manchester.ac.uk/DocuInfo.

aspx?DocID=487), in any relevant Thesis restriction declarations deposited in

the University Library, The University Library’s regulations (see http://www.

manchester.ac.uk/library/aboutus/regulations) and in The University’s

policy on Presentation of Theses.

9



Acknowledgements

I would first like to thank my supervisor Tobias Galla, whose infectious enthusiasm

and invaluable guidance have ensured this experience has been wholly fulfilling. My

gratitudes are also with Alan McKane for maintaining a stimulating environment for

me to work in, and with my collaborators Philipp Altrock, Franziska Michor, and

Arne Traulsen for the support they provided and the opportunities they presented. A

special mention is reserved for Yen Ting Lin for his much-appreciated feedback and

constructive criticisms.

Thanks to all the occupants of o�ce 7.26 who are too numerous to name, but you

know who you are, and to the post-docs who have been and gone during my PhD.

Thanks to my niece Mia, whose timely birth in the middle of writing this thesis

provided some much-needed distraction, and to the rest of my family for their support.

Finally, I want to give a really big thank you to Stacey, who has consistently put

up with my unending drivel about the wonders of science. Without your support and

understanding I wouldn’t be who I am today. Here’s to the next adventure!

10



Publications

This thesis is based on the following publications, submissions, and works in progress:

P. Ashcroft, P. M. Altrock, and T. Galla, Fixation in finite populations evolving

in fluctuating environments. J. R. Soc. Interface 11, 20140663 (2014).

P. Ashcroft, F. Michor, and T. Galla, Stochastic tunneling and metastable states

during the somatic evolution of cancer. Genetics 199, 1213 (2015).

P. Ashcroft, A. Traulsen, and T. Galla, When the mean is not enough: Cal-

culating fixation time distributions in birth–death process. arXiv:1504.04249

(2015).

P. Ashcroft, Y.-T. Lin, and T. Galla, In progress.

Other published work not contained in this thesis:

P. Ashcroft and T. Galla, Pattern formation in individual-based systems with

time-varying parameters. Phys. Rev. E 88, 062104 (2013).

11



12



Chapter 1

Introduction

Over the next 200 or so pages I will explore how tools and concepts developed within

theoretical physics can be applied to problems in other sciences. Although more em-

phasis in this thesis will be directed to biological applications, the successes of this

field can also be seen in social science [1,2], economics [3,4], and many other disciplines

where so-called complex systems are a prominent feature.

My motivation for working in this area is the freedom you have to explore these

numerous disciplines, and the satisfaction that arises from solving a long-standing

problem by approaching it from an unconventional point of view. Interactions with

academics from these various backgrounds has provided hours of intellectual conversa-

tion and brainstorming that have greatly enhanced my knowledge of the world outside

of physics. But ultimately the main reason for joining this area, and choosing to

continue my career in this field, is because the analysis is fun! The benefits of the ap-

proaches I use lie not only in their predictive power, but they are enjoyable, satisfying,

stimulating and infuriating in equal measures.

The success of theoretical physics across multiple disciplines comes from its ability

to break down objects to their fundamental constituents. Analysis of the inner work-

ings then allows the practitioner to obtain a more complete understanding of the world.

An experimentalist works with the real-world system, or a synthetic in vitro analogue.

Their understanding of this system is achieved through the collection and analysis of

13



14 CHAPTER 1. INTRODUCTION

data. Theorists, however, obtain an understanding by considering a representation of

the real-world system, which I will refer to as a model.

For biological systems an exact model representation is often impossible due to the

inherent complexity of many interacting entities. If a model is almost as complicated

as the experimental system, it will be just as intractable. In the end you would have

the same data set, but generated in silico, and no new insight or understanding will

have been gained. As the level of abstraction from the real world increases, so does the

level of tractability. The balance between accuracy and tractability is a choice to be

made by the modeller. In the case of this thesis, Occam’s Razor prevails; I will focus

on the simplest models which reproduce observed behaviours, but can be applied to a

wide range of problems. These models can highlight the underlying mechanisms that

result in the observed phenomenon, something that may not be immediately obvious

from simply conducting an experiment.

One of the most profound examples of this in the biosciences is the explanation

of the regular structures on the coats of animals [5]. The colouration was known

to be caused by melanin in the skin, but there was no explanation for the origin of

the pattern of this colouration in animals such as zebras and leopards. The seminal

work of Alan Turing (1912–1954) provided part of the answer. Turing proposed that

di↵usive chemicals can settle into a stable, spatially-inhomogeneous state through the

excitation of the now-called Turing instability [6]. Although the true mechanism is

more complex than the idea proposed by Turing [7], the same basic principles were

applied to reproduce observed animal coat patterns [8].

The class of systems in which my interest lies is not the continuous reaction–

di↵usion systems as studied by Turing, but systems that contain a finite number of

discrete, interacting ‘particles’ or individuals. Such systems are ubiquitous in nature,

where particles could represent proteins, molecules, cells, bacteria, animals or people.

The dynamics of the particles can be governed by events such as production (birth),

degradation (death), predation or infection, to name but a few. The discreteness

of the particles, and the nature of the dynamics, are responsible for the observed
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stochasticity; that is, there is an intrinsic source of randomness in these systems, often

referred to as demographic noise.

The discreteness of the particles, and with it the intrinsic stochasticity, is retained

when modelling these systems. However, information about the behaviour of every

individual particle is not necessary. Instead, the simplifying assumption that two

particles of the same type are indistinguishable is made. The behaviour of the system

can then be described by the statistics of the group of particles. This procedure is the

basis of statistical mechanics, and the approach is poetically summarised by James

Clerk Maxwell (1831–1879):

“And here I wish to point out that, in adopting this statistical method

of considering the average number of groups of molecules selected according

to their velocities, we have abandoned the strict kinetic method of tracing

the exact circumstances of each individual molecule in all its encounters.

It is therefore possible that we may arrive at results which, though they

fairly represent the facts as long as we are supposed to deal with a gas in

mass, would cease to be applicable if our faculties and instruments were so

sharpened that we could detect and lay hold of each molecule and trace it

through all its course.”

– James Clerk Maxwell, The Theory of Heat, (1871) [9].

Here Maxwell is referring to the original derivation of the Maxwell-Boltzmann distri-

bution, which describes the distribution of speeds of molecules of a contained ideal

gas [10].1

To model the particles in the discrete systems in mass they are treated like molecules

of a gas. The interactions then take a form which is similar to that of chemical reac-

tions. These reactions are dependent on the number of reactants (molecules) available

and the rate at which the gas molecules interact [12]. These models are referred to as

individual-based models, and they have been applied to study epidemic outbreaks [13],

social dilemma [14], predator-prey interaction [15], and the list can go on and on. This

1Ludwig Boltzmann (1844–1906) later derived this result from the kinetic theory of gases [11].
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thesis, however, is not dedicated to a particular system or application. Instead I will

investigate particular phenomena that are observed in a variety of stochastic systems.

These are:

Fixation: The process of a single type of individual taking over the whole popula-

tion. The term originates from the field of population genetics, where the fixation of

an allele was a central topic [16–19]. In this case fixation occurs when all other alleles

are irreversibly lost from the gene pool, and only a single fixed allele remains. The ter-

minology is now used outside of population genetics and the study of gene frequencies,

for example to describe the eradication of a disease or reaching a social consensus.

Equilibration: The process of reaching a stable stationary state. If fixation is not

possible in a system, as is the case if individuals can change their type stochastically,

then the success of a type of individual is no longer characterised by the probability

that it takes over the population. Instead success can be measured by its relative con-

centration at long times. This is described by the stationary probability distribution.

The time to approach this stable state is also of interest.

These two e↵ects are closely linked; if a system fixates then no more dynamics can

occur and hence the fixated state is stationary. They are also related if fixation takes

a very long time, such that the system can initially relax into a quasi-stationary state

before fixation occurs. These links will be investigated closely in Chapters 4 and 5.

A concrete understanding of the e↵ects of fixation and equilibration, and the in-

terplay between them, will greatly contribute to our understanding of the process of

evolution. This field of investigating evolution through mathematical approaches has

been dubbed evolutionary dynamics, and it describes the change of populations over

time subject to spontaneous mutation, selection, and random events [14,20]. Di↵erent

types of individual in the population, which we will sometimes call phenotypes in line

with the biological literature, can emerge spontaneously by mutation, i.e. through

errors during reproduction of the pre-existing wild-types. In many cases, wild-type

and mutant individuals are characterised by heritable di↵erences in behavioural traits
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or strategies [14]. Selection acts on di↵erent (pheno)types and their associated traits

to change the population composition.

One of the great successes of evolutionary dynamics is the quantitative analysis

of cancer, which is a genetic disease and according to Cancer Research UK, “1 in 2

people in the UK born after 1960 will be diagnosed with some form of cancer during

their lifetime” [21]. Mathematical investigations have contributed profoundly to our

understanding of “the emperor of all maladies” [22]. Numerous studies throughout the

20th century have addressed the kinetics of cancer initiation and progression [23–28].

In Ref. [23], it was first proposed that “several successive mutations in the same cell

[. . . ] would be necessary [for cancer to initiate]”. Empirical observations of mortality

rates across a range of cancer types agreed with this hypothesis [24]. For some varieties

of cancer it was shown by Alfred Knudson (1922–) that tumours can be induced

by as few as two mutations, corresponding to the inactivation of both copies of a

specific tumour suppressor gene (TSG) [26]. The data that confirmed this hypothesis

is presented in Fig. 1.1. This is data for the diagnosis of tumours, or retinoblastomas, in

the eyes of children. Knudson hypothesised that if the tumours required two mutations,

we would observe a quadratic incidence rate. However, if the child had inherited

a defective gene, the incidence curve should be linear and there is a much larger

probability that the cancer will be present in both eyes, which is referred to as bilateral.

The data clearly favours Knudson’s interpretation, and this is the celebrated two-hit

hypothesis [26].

The age of stochastic modelling of cancer initiation began in earnest with the

introduction of the branching process, as shown in Fig. 1.2 [28]. Similar models have

been used extensively to describe various aspects of carcinogenesis [29, 30], and the

branching process itself has received significant analytical attention [31, 32]. Other

stochastic models have also been investigated to describe the initiation of cancer,

including the linear process which mimics the spatial structure of some tissues [33],

and well-mixed Moran-type models which represent cells in a tissue of fixed size [34].

This latter class of models is investigated in Chapter 5 of this thesis, as described
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Figure 1.1. Fraction of cases of retinoblastoma not yet diagnosed as a function of the
children’s age. The one-hit (bilateral) curve is log S = �t/30, and the two-hit (unilateral)
curve is log S = 4 ⇥ 10�5

t

2, where S is the fraction of cases not diagnosed and t is the
children’s age in months. This figure is from Ref. [26].

below.

Another prosperous area of evolutionary dynamics has arisen through the consid-

eration of interactions between individuals. If, for example, one type of individual can

produce a promoter which benefits the population, then more individuals of this type

will lead to more production and a stronger population. However, this production

usually comes at a cost to the producer, and the population is vulnerable to exploita-

tion from individuals who do not produce, but still reap the reward. These individuals

are cheaters, and this scenario is the celebrated public goods game [35]. Considering

these types of interactions which are dependent on the state of the population leads

to rich dynamical behaviour. The mathematical framework for handling such cases

is evolutionary game theory [14, 36–39], and the rich behaviours that it predicts have

been observed in experiments of biological evolution [40–43].
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Figure 1.2. The branching process model of cancer initiation introduced in Ref. [28]. On the
left is shown the three possible fates of an un-mutated cell, S: the cell can die (upwards arrow
to state D), reproduce without mutation (downwards arrow to two S cells), or reproduce
with mutation (horizontal arrow to one S and one I). The mutation occurs with rate µ

1

,
and type-I cells harbour one mutation. In turn the type-I cells follow the same process of
dying or reproducing with or without mutation. The mutation occurs at rate µ

2

and gives
rise to a malignant cell M . This figure is from Ref. [28].

This thesis is dedicated to improving our understanding of the processes of fix-

ation and equilibration through evolutionary dynamics. In the next Chapter I will

introduce the framework that will be used to analyse these systems of discrete, indis-

tinguishable particles. Particular attention will be devoted to so-called birth–death

processes, which are highly tractable yet ubiquitous in evolutionary dynamics [14].

These processes describe the temporal behaviour of a population containing two in-

teracting types of individual, referred to as the wild-type and the mutant. I will also

introduce evolutionary game theory in more detail as it is used throughout this thesis

to illustrate the e↵ects of fixation and equilibration.

In Chapter 3 I will extend the aforementioned birth–death process to study the

impact of a changing environment on the evolution of a finite population of fixed

size [44]. The rates at which the birth and death events occur are dependent on the

state of the environment, which follows an independent random process. A general

theory is developed to describe the fixation probability of a mutant in a population

of wild-types, as well as the time taken for fixation to occur. The theory is then

applied to evolutionary games for which the payo↵ structure varies in time. It is

found, surprisingly, that the mutant can exploit the environmental noise; a dynamic

environment that switches between two states can lead to a probability of fixation
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that is higher than in any of the individual environmental states. In this Chapter I

will also investigate the stationary distribution of the population when mutations are

present in the dynamics, and prescribe approximations of the stationary distribution

which are valid under di↵erent environmental dynamics.

The birth–death process will also be the central feature of Chapter 4. In this Chap-

ter the novelty comes not from an extension to the model, but from finding an exact

solution to describe the distribution of fixation times. As the title of the associated

article suggests, sometimes the mean is not enough to give a good representation of

the statistics of arrival times [45]. This may be the case if the distribution is broad and

skewed. The distribution can be expressed in terms of the spectrum of the birth-death

process, and the analysis leads to di↵erent representations as forward-only processes

in eigenspace. These allow e�cient sampling of fixation time distributions and will

be a powerful tool to use in model-reduction schemes. Again evolutionary games are

considered as an exemplary application. In this Chapter I will also highlight the me-

dian fixation time as a possible analogue of the time to stationarity in systems with

small mutation rates and no absorbing states, whereas the mean fixation time has no

such interpretation. This provides a crucial link between the e↵ects of fixation and

equilibration.

In Chapter 5 I will leave behind evolutionary games and turn my attention to

the initiation of cancer. This work follows on from numerous computational and

mathematical investigations of the phenomenon of stochastic tunnelling, where an

intermediate mutant in a sequence does not reach fixation in a population before

generating a double mutant [34,46–51]. The field of stochastic tunnelling still lacked a

comprehensive analytical description, since theoretical predictions of fixation times are

only available for cases in which the second mutant is advantageous. The starting point

for the investigation is the same stochastic model as used in these previous studies.

By systematically analysing the deterministic dynamics of infinite populations, the

parameter regimes captured by existing approaches were shown to be qualitatively

di↵erent to those not captured. The analysis reveals the existence of quasi-equilibria
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when the final mutant is not the most advantageous in the sequence. The escape from

these states is driven by the intrinsic noise, and the location of these states a↵ects the

probability of tunnelling occurring. Existing methods no longer apply in these regimes.

Instead it is the escape from the quasi-equilibria that is the key bottleneck; fixation is

no longer limited by the emergence of a successful mutant lineage. In these parameter

regimes I employ the Wentzel–Kramers–Brillouin (WKB) method from mathematical

physics to compute the time to fixation.

In Chapter 5 the WKB approach was used as an ‘o↵-the-shelf’ tool; I primarily used

the method discussed in Ref. [52] to tackle the problem at hand. In Chapter 6 I take

a closer look at the WKB method in the context of stochastic systems. It has previ-

ously been used to describe a variety of systems, including: the evolutionary dynamics

of coexisting bacteria [53], predator–prey systems [54], epidemic models [55–59], and

evolutionary games [60]. However, little attention is devoted to really understanding

and explaining the method used. In this Chapter I will discuss the origins of the

WKB method, explain the terminology used throughout the literature, make connec-

tions with the related field of large deviations theory, and highlight what makes this

method superior to other approaches under specific conditions. A central feature of the

method is the construction of a landscape, or ‘quasi-potential’ for stochastic systems.

Waddington’s epigenetic landscape [61] is a primitive example of such a construct,

but similar pictures can provide intuition and quantitative predictions for a range of

stochastic models. The power of this method will be illustrated by considering various

applications, including the cancer initiation model discussed in Chapter 5.

Finally I will summarise the findings of this work and discuss the avenues of future

research that this thesis has promoted in Chapter 7.
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Chapter 2

Technical background

In this Chapter I will outline the mathematical and numerical techniques used through-

out this thesis to analyse stochastic systems.

2.1 Definition: Stochastic processes

A stochastic process is defined as a function of stochastic or ‘random’ variables and

time [12]. In this thesis the function describes how the random variables jump between

values as time progresses. We will focus on how the probability distributions of the

stochastic variables evolve in time, and the quantities that can be obtained from this.

As an example consider the stochastic variables n(t) = [n
1

(t), n
2

(t), . . . ], where n
i

(t) is

an integer that describes the number of particles of type i at time t. We can picture the

classic probability exemplar of coloured balls in a bag, with time evolution described

by balls being removed and/or added to the bag at random. The vector n(t) describes

the state of the system. If the initial state of the system is known at time t
0

to be n
0

,

then the state of the system at a future time will be described by a distribution for the

probability that the state n will be observed at time t. We write this as P (n, t|n
0

, t
0

),

where the vertical line is to be read as “given that”. This is known as a conditional

probability.

This thesis will focus on a subclass of stochastic processes in which the future

23
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behaviour of a system is determined only by the state of the system at the present

time, and has no dependence on past states. These processes are known as Markov

processes, after the Russian mathematician Andrey Markov (1856–1922). If the system

was observed in the state n
j

at time t
j

for j = 0, 1, . . . , k � 1 (t
0

< t
1

< · · · < t
k�1

),

then the Markov property can be written as

P (n
k

, t
k

|n
0

, t
0

; n
1

, t
1

; . . . ; n
k�1

, t
k�1

) = P (n
k

, t
k

|n
k�1

, t
k�1

), (2.1)

where t
k�1

< t
k

. The semicolons in the above expression are to be read as “and”.

2.2 Chapman–Kolmogorov and master equations

The probability of observing a specific ‘path’ through state-space is described by the

joint probability distribution

P (n
0

, t
0

; n
1

, t
1

; . . . ; n
k

, t
k

). (2.2)

This joint distribution is related to the conditional distribution through Bayes’1 rule

[12], which states

P (n
j+1

, t
j+1

; . . . ; n
k

, t
k

|n
0

, t
0

; . . . ; n
j

, t
j

) =
P (n

0

, t
0

; . . . ; n
k

, t
k

)

P (n
0

, t
0

; . . . ; n
j

, t
j

)
. (2.3)

Together with the Markov assumption (2.1), we can write

P (n
0

, t
0

; . . . ; n
k

, t
k

) = P (n
k

, t
k

|n
k�1

, t
k�1

)P (n
0

, t
0

; . . . ; n
k�1

, t
k�1

)

= P (n
k

, t
k

|n
k�1

, t
k�1

)P (n
k�1

, t
k�1

|n
k�2

, t
k�2

)P (n
0

, t
0

; . . . ; n
k�2

, t
k�2

)

...

=

"

k

Y

j=1

P (n
j

, t
j

|n
j�1

, t
j�1

)

#

P (n
0

, t
0

). (2.4)

From this equation we can recover two fundamental relations. First, taking k = 1 in

Eq. (2.4) and then summing over n
0

(known as marginalising the joint distribution),

we recover

P (n
1

, t
1

) =
X

n0

P (n
1

, t
1

|n
0

, t
0

)P (n
0

, t
0

). (2.5)

1Rev. Thomas Bayes (1701–1761).
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Second, taking k = 2 in Eq. (2.4) and summing over n
1

gives

P (n
0

, t
0

; n
2

, t
2

) =
X

n1

P (n
2

, t
2

|n
1

, t
1

)P (n
1

, t
1

|n
0

, t
0

)P (n
0

, t
0

). (2.6)

Dividing by P (n
0

, t
0

) and applying Bayes’ rule gives

P (n
2

, t
2

|n
0

, t
0

) =
X

n1

P (n
2

, t
2

|n
1

, t
1

)P (n
1

, t
1

|n
0

, t
0

). (2.7)

This is the Chapman–Kolmogorov equation, named after Sydney Chapman (1888–

1970) and Andrey Kolmogorov (1903–1987). Analogous expressions for Eqs. (2.5)

and (2.7) can be obtained for continuous state-spaces by replacing sums with the

corresponding integrals.

To simplify the Chapman–Kolmogorov equation we will look at the evolution of

the distribution in a small time-step, �t, conditioned on an initial configuration. We

write the Chapman–Kolmogorov equation as

P (n, t+�t|n
0

, t
0

) =
X

n

0

P (n, t+�t|n0, t)P (n0, t|n
0

, t
0

). (2.8)

To evaluate the term P (n, t+�t|n0, t), i.e. what is the probability for the system to be

found in state n a short period of time after it was observed in state n0, we introduce

the transition rate w
n,n

0 . This is the rate per unit time at which the transition from

n0 to n occurs. All processes that will be considered in this Chapter will have time-

independent reaction rates. Such processes are referred to as ‘homogeneous’ Markov

processes [12]. We can expand the jump probability as

P (n, t+�t|n0, t) = �
n,n

0 + w
n,n

0�t+ O �

�t2
�

. (2.9)

As the system must be found somewhere at time t + �t, we have the normalisation

condition
P

n

P (n, t+�t|n0, t) = 1 for all n0. From this we find

P (n, t+�t|n0, t) = (1 � �
n,n

0)w
n,n

0�t+ �
n,n

0(1 � w
n,n

�t) + O �

�t2
�

, (2.10)

where w
n,n

=
P

n

0 6=n

w
n

0
,n

. Substituting this relation into Eq. (2.8) gives

P (n, t+�t|n
0

, t
0

) =
X

n

0 6=n

w
n,n

0�t P (n0, t|n
0

, t
0

)

+

"

1 �
X

n

0 6=n

w
n

0
,n

�t

#

P (n, t|n
0

, t
0

) + O �

�t2
�

. (2.11)
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Taking the limit �t ! 0 and rearranging gives the continuous-time master equation

Ṗ (n, t|n
0

, t
0

) =
X

n

0 6=n

[w
n,n

0P (n0, t|n
0

, t
0

) � w
n

0
,n

P (n, t|n
0

, t
0

)] . (2.12)

This has the intuitive interpretation that the probability of being in state n increases

due to transitions into the state (with rate w
n,n

0) and decreases due to transitions out

of the state (with rate w
n

0
,n

).

Sometimes it is more intuitive to label the transition rates not by their initial and

final state, but by the initial state and the stoichiometric e↵ect of that transition. We

write T ⌫
n

= w
n+⌫,n for the transition rate from state n to state n + ⌫, where ⌫ is

the so-called stoichiometric coe�cient [12]. The master equation (2.12) can then be

rewritten as

Ṗ
n

(t) =
X

⌫

⇥

T ⌫
n�⌫Pn�⌫(t) � T ⌫

n

P
n

(t)
⇤

, (2.13)

where we have suppressed the initial condition notation for optical convenience. Through-

out it will be assumed that all probabilities are conditioned on being in state n
0

at

time t
0

= 0, such that P
n

(t) = P (n, t|n
0

, 0). The sum in Eq. (2.13) runs over all

possible reactions.

2.3 Birth–death process

An interesting case which will feature prominently in this thesis is the one-dimensional

one-step process, often referred to as a birth–death process [62]. This process has been

used to describe the proliferation of a disease, such as influenza, or the extinction of a

colonising species [62]. We will use birth–death processes to describe the evolution of

a population of two competing types of individual, labelled type A and type B. We

assume that the total number of individuals, N , is constant, such that the state of the

population can be described by a single number. We let i be the number of individuals

of type A (0  i  N), N � i is then the number of individuals of type B. Only two

possible reactions are allowed:

(i) Birth events where the number of type-A individuals increases by one and the
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0 1 … i−1 i i+1 … N−1 N
d

i

�

i

b

i

d

N

b0

Figure 2.1. The birth–death process described by Eq. (2.14). Given the system is in state
i, it can only jump to states i + 1 or to state i � 1 with rates b

i

and d

i

respectively. The
rates b

0

and d

N

determine the type of boundary. If b

0

= d

N

= 0 then the boundaries are
absorbing, otherwise they are reflecting. A quantity of interest in the absorbing boundary
case is the fixation probability, �

i

. This is the probability that the system reaches the
absorbing boundary at state N , given that it is initially in state i.

number of type-B individuals decreases by one. We will often use the notation

i ! i+ 1;

(ii) Death events where the number of type-A individuals decreases by one and the

number of type-B individuals increases by one, labelled as i ! i � 1.

This process is illustrated in Fig. 2.1. We can replace the transition rates T ⌫

i

in the

master equation (2.13) with the birth rate b
i

if ⌫ = +1 and the death rate d
i

if ⌫ = �1.

These transition rate are extensive; they scale linearly with the system size N such

that larger systems have more frequent reactions [12]. The master equation for the

birth–death process is

Ṗ
i

(t) = b
i�1

P
i�1

(t) + d
i+1

P
i+1

(t) � (b
i

+ d
i

)P
i

(t). (2.14)

The birth and death rates must satisfy the boundary conditions b
N

= d
0

= 0, such

that the number of individuals of a single type cannot leave the domain 0  i  N .

The states i = 0 and i = N may have a special form, which leads to further boundary

conditions. This is discussed below.

Eq. (2.14) can also be written in the more compact matrix representation as

Ṗ(t) = W · P(t), (2.15)

where the (N+1)⇥ (N+1) tridiagonal matrix W has elements w
i+1,i

= b
i

, w
i�1,i

= d
i

,

and w
i,i

= �(b
i

+ d
i

). All other elements are zero. Direct integration of this equation
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gives the formal solution

P(t) = eWt · P(0). (2.16)

Despite its compact form, this solution is not very helpful as matrix exponentials are

notoriously di�cult to evaluate and the computational time to evaluate this function

can scale exponentially with the size of the state-space. In Chapter 4 we will use (a

truncated form of) Eq. (2.16) to compute some statistics of birth–death processes. It

is worth noting that Eq. (2.15) and solution (2.16) are not just limited to birth–death

processes, but can also be written down for the more general master equation (2.13)

with appropriate choices of the matrix W and indexing of the state-space.

The birth–death process can also be described in discrete time (as can other pro-

cesses). Substituting the birth and death rates into Eq. (2.11) gives the discrete-time

master equation

P
i

(t+�t) = �tb
i�1

P
i�1

(t) +�td
i+1

P
i+1

(t) + (1 � �tb
i

� �td
i

)P
i

(t). (2.17)

A suitable choice for the time-step is �t = 1/N as one unit of time is then a generation

with N possible birth and death events. Thus the probability of a birth or death event

happening in a single time-step are b
i

/N and d
i

/N . These quantities are intensive. Any

global rescaling of the reaction probabilities corresponds to a global rescaling of time.

This allows us to absorb the time-step �t = 1/N into the transition probabilities b
i

and d
i

, provided that b
i

� 0, d
i

� 0, and b
i

+ d
i

 1 for all 0  i  N , and set �t = 1

throughout such that the variable t simply counts the number of time-steps. This

is the convention followed in numerous sources [63–65]. The number of generations,

which is the unit of time used in the continuous-time framework, is then given by t/N .

Backward equations

We can introduce a companion to the master equation which is given by the adjoint

of Eq. (2.14) [12, 62]. For the birth–death process this ‘backward’ equation reads

Q̇
j;i

(t) = b
i

Q
j;i+1

(t) + d
i

Q
j,i�1

(t) � (b
i

+ d
i

)Q
j;i

(t), (2.18)
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whereQ
j;i

(t) is the probability to be found in state j a period of time t after being found

in state i. The forward master equation (2.14) describes the distribution at a future

time given a fixed initial condition. The backward master equation (2.18), however, has

a fixed final condition and variable initial state. This is analogous to the Schrödinger

and Heisenberg pictures of quantum mechanics, where the time-dependence is moved

between the state vectors and the operators [12,66]. The use of this form of equation

will become obvious in the next section. In matrix form the backward master equation

can be written as

Q̇
j

(t) = Q
j

(t) · W, (2.19)

where W is the same matrix as appears in Eq. (2.15) and Q
j

(t) is a now a row vector.

We can also write the backward master equation (2.18) in discrete-time form as

Q
j;i

(t+�t) = �tb
i

Q
j;i+1

(t) +�td
i

Q
j;i�1

(t) + (1 � �tb
i

� �td
i

)Q
j;i

(t), (2.20)

and we will use this form in the next section to derive arrival-time statistics of birth–

death processes with absorbing boundaries. As before we will set �t = 1 throughout.

2.4 Fixation probability and mean fixation times

We continue with the example of birth–death processes. If the birth and death rates

at the boundaries satisfy b
0

= d
N

= 0, then the states 0 and N are absorbing; no

further dynamics can occur once the population has reached one of these states. The

state i = 0 corresponds to the extinction of type-A individuals from the population

and the fixation of type-B individuals. Once extinct, no birth events can take place

that reintroduce type-A individuals (except in the case where mutations can occur

during reproduction events as discussed in the next section). In the state i = N ,

the population consists entirely of type-A individuals. Here type-A individuals have

reached fixation and type-B individuals have become extinct from the population.

Explicit expressions for the fixation probabilities and mean fixation times for the

birth–death process can be obtained from Eq. (2.20) [or equivalently Eq. (2.18) in

continuous time]. The calculations can be found in numerous sources [12,14,62–65,67],
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but we will repeat them here for completeness. We will consider the case of a discrete-

time process, however all results in this section apply to continuous-time processes too.

As described above we choose the time-step to be �t = 1 and rescale the transition

probabilities b
i

and d
i

accordingly.

Fixation probability

To compute the probability that type-A individuals reach fixation, we set j = N in

Eq. (2.20) and take the limit t ! 1. Writing �
i

(t) = lim
t!1 Q

N ;i

(t), we obtain

�
i

= b
i

�
i+1

+ d
i

�
i�1

+ (1 � b
i

� d
i

)�
i

. (2.21)

This has the intuitive interpretation that the probability of type-A individuals reaching

fixation from state i is given by the probability of hopping to i+1 and reaching fixation

from there, plus the probability of hopping to i � 1 and reaching fixation from there,

plus the probability of not hopping and reaching fixation from i. Eq. (2.21) is subject to

the boundary conditions �
0

= 0 and �
N

= 1. It can be solved explicitly by introducing

the di↵erence variable �
i

= �
i

� �
i�1

to give b
i

�
i+1

= d
i

�
i

. The solution can be found

recursively to give

�
i

=
d
i�1

b
i�1

�
i�1

=
d
i�1

b
i�1

d
i�2

b
i�2

�
i�2

=

 

i�1

Y

j=1

d
j

b
j

!

�
1

=

 

i�1

Y

j=1

d
j

b
j

!

�
1

, (2.22)

where we have used the boundary conditions to write �
1

= �
1

� �
0

= �
1

. Taking the

sum over the �
i

yields
P

N

k=1

�
k

= �
N

= 1, and hence we can write

1 =
N

X

k=1

�
k

= �
1

N

X

k=1

k�1

Y

j=1

d
j

b
j

= �
1

 

1 +
N�1

X

k=1

k

Y

j=1

d
j

b
j

!

. (2.23)

Introducing the compact notation �
j

= d
j

/b
j

, we arrive at

�
1

=
1

1 +
P

N�1

k=1

Q

k

j=1

�
j

, (2.24a)

�
i

=
i

X

k=1

�
k

= �
1

i

X

k=1

k�1

Y

j=1

�
j

=
1 +

P

i�1

k=1

Q

k

j=1

�
j

1 +
P

N�1

k=1

Q

k

j=1

�
j

. (2.24b)
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Mean unconditional fixation time

A similar procedure is used to calculate the mean fixation times. We first consider the

case of the unconditional fixation time, that is the number of time-steps taken until

either type A or type B have reached fixation, or simply the number of time-steps

taken to reach either of the absorbing boundaries. This quantity is itself a stochastic

variable which follows a distribution. This distribution can be characterised by the

infinite set of moments, the most informative of which is the mean. We introduce the

variable #
i

(t) = Q
0;i

(t) +Q
N ;i

(t), which is the cumulative probability to have arrived

at either absorbing state t time-steps after being in state i. The probability to arrive

at an absorbing boundary at time t is then #
i

(t)� #
i

(t� 1). The mean unconditional

fixation time, given the initial condition i, is then defined by

t
i

=

1
X

t=0

t [#
i

(t) � #
i

(t � 1)]

1
X

t=0

[#
i

(t) � #
i

(t � 1)]

=
1
X

t=0

t [#
i

(t) � #
i

(t � 1)] , (2.25)

where we have used #
i

(t  0) = 0 and lim
t!1 #

i

(t) = 1 to find
P1

t=0

[#
i

(t) � #
i

(t � 1)] =

1. From the backward master equation (2.20) it can be seen that #
i

(t) satisfies

#
i

(t+ 1) = b
i

#
i+1

(t) + d
i

#
i�1

(t) + (1 � b
i

� d
i

)#
i

(t). (2.26)

Subtracting #
i

(t) from both sides, multiplying by t and summing yields

1
X

t=0

t [#
i

(t+ 1) � #
i

(t)] = b
i

1
X

t=0

t [#
i+1

(t) � #
i+1

(t � 1)]

+d
i

1
X

t=0

t [#
i�1

(t) � #
i�1

(t � 1)]

+(1 � b
i

� d
i

)
1
X

t=0

t [#
i

(t) � #
i

(t � 1)] . (2.27)
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The left-hand side of this equation needs some work to extract the mean fixation time

t
i

. We can write this as
1
X

t=0

t [#
i

(t+ 1) � #
i

(t)] =
1
X

t=1

(t � 1) [#
i

(t) � #
i

(t � 1)]

=
1
X

t=1

t [#
i

(t) � #
i

(t � 1)] �
1
X

t=1

[#
i

(t) � #
i

(t � 1)]

=
1
X

t=0

t [#
i

(t) � #
i

(t � 1)] �
1
X

t=0

[#
i

(t) � #
i

(t � 1)]

= t
i

� 1, (2.28)

where we have used #
i

(0) = 0 and in the last step we have used lim
t!1 #

i

(t) = 1.

Eq. (2.27) can now be written as

t
i

= b
i

t
i+1

+ d
i

t
i�1

+ (1 � b
i

� d
i

)t
i

+ 1. (2.29)

This also has the intuitive interpretation that the time to reach fixation from state

i is given by the probability of hopping to i + 1 and reaching fixation from there,

plus the probability of hopping to i � 1 and reaching fixation from there, plus the

probability of not hopping and reaching fixation from i, plus the time taken for this

step. This equation has boundary conditions t
0

= t
N

= 0. Using Eq. (2.29), the

di↵erence variable ⌫
i

= t
i

� t
i�1

satisfies ⌫
i

= �
i�1

⌫
i�1

� 1/b
i�1

. The solution can be

found recursively to give

⌫
i

= t
1

i�1

Y

m=1

�
m

�
i�1

X

`=1

1

b
`

i�1

Y

m=`+1

�
m

, (2.30)

where we have used the boundary conditions to write ⌫
1

= t
1

� t
0

= t
1

. Taking the

sum over the set {⌫
i

} yields
P

N

k=i+1

⌫
k

= �t
i

. In particular we have
P

N

k=2

⌫
k

= �t
1

.

With this we can write

t
1

= �t
1

N

X

k=2

k�1

Y

m=1

�
m

+
N

X

k=2

k�1

X

`=1

1

b
`

k�1

Y

m=`+1

�
m

, (2.31)

and from this we can calculate

t
1

= �
1

N�1

X

k=1

k

X

`=1

1

b
`

k

Y

m=`+1

�
m

, (2.32a)

t
i

= �
N

X

k=i+1

⌫
k

= �t
1

N�1

X

k=i

k

Y

m=1

�
m

+
N�1

X

k=i

k

X

`=1

1

b
`

k

Y

m=`+1

�
m

. (2.32b)
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These are expressions for the average number of time-steps taken to reach either ab-

sorbing boundary. The mean unconditional fixation time measured in units of gener-

ations is found by dividing Eqs. (2.32) by the system size, N .

If we instead considered a continuous-time process with extensive birth and death

rates b
i

and d
i

, Eqs. (2.32) describe the mean unconditional fixation time in units of

generations. The fraction 1/b
`

in the Eqs. (2.32) ensures that time is measured in

units of 1/N , i.e. in generations.

Mean conditional fixation time

The conditional fixation time is determined in a very similar way. We here focus on the

fixation of type A. We introduce the variable '
i

(t) = Q
N ;i

(t), which is the cumulative

probability to have arrived at the all-type-A state t time-steps after being in state i.

The probability to arrive in state N at time t is '
i

(t)�'
i

(t� 1), and hence the mean

conditional fixation time, given the initial condition i, is then defined by

t
i|A =

1
X

t=0

t ['
i

(t) � '
i

(t � 1)]

1
X

t=0

['
i

(t) � '
i

(t � 1)]

=
1

�
i

1
X

t=0

t ['
i

(t) � '
i

(t � 1)] , (2.33)

where �
i

is the fixation probability defined in Eq. (2.24) and '
i

(t  0) = 0.

From Eq. (2.20) it can be seen that '
i

(t) satisfies

'
i

(t+ 1) = b
i

'
i+1

(t) + d
i

'
i�1

(t) + (1 � b
i

� d
i

)'
i

(t). (2.34)

Subtracting '
i

(t) from both sides, multiplying by t and summing yields
1
X

t=0

t ['(t+ 1) � '
i

(t)] = b
i

1
X

t=0

t ['
i+1

(t) � '
i+1

(t � 1)]

+d
i

1
X

t=0

t ['
i�1

(t) � '
i�1

(t � 1)]

+(1 � b
i

� d
i

)
1
X

t=0

t ['
i

(t) � '
i

(t � 1)] . (2.35)

Following the procedure above, and introducing the variable ✓
i

= �
i

t
i|A, we can arrive

at the expression

✓
i

= b
i

✓
i+1

+ d
i

✓
i�1

+ (1 � b
i

� d
i

)✓
i

+ �
i

. (2.36)
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We note that Eq. (2.29) and Eq. (2.36) are very similar, but the di↵erence is more than

just a global pre-factor �
i

. This equation has boundary conditions ✓
0

= ✓
N

= 0. Using

Eq. (2.36), the di↵erence variable ⌘
i

= ✓
i

�✓
i�1

satisfies ⌘
i

= �
i�1

⌘
i�1

��
i�1

/b
i�1

. This

can again be solved recursively to give

⌘
i

= ✓
1

i�1

Y

m=1

�
m

�
i�1

X

`=1

�
`

b
`

i�1

Y

m=`+1

�
m

, (2.37)

where we have used the boundary conditions to write ⌘
1

= ✓
1

� ✓
0

= ✓
1

. Taking the

sum over the set {⌘
i

} yields
P

N

k=i+1

⌘
k

= �✓
i

. In particular we have
P

N

k=2

⌘
k

= �✓
1

.

With this we can write

✓
1

= �✓
1

N

X

k=2

k�1

Y

m=1

�
m

+
N

X

k=2

k�1

X

`=1

�
`

b
`

k�1

Y

m=`+1

�
m

, (2.38)

and from this we can calculate

✓
1

= �
1

N�1

X

k=1

k

X

`=1

�
`

b
`

k

Y

m=`+1

�
m

, (2.39a)

✓
i

= �
N

X

k=i+1

⌘
k

= �✓
1

N�1

X

k=i

k

Y

m=1

�
m

+
N�1

X

k=i

k

X

`=1

�
`

b
`

k

Y

m=`+1

�
m

. (2.39b)

The average number of time-steps until type-A individuals take over the population is

then given by t
i|A = ✓

i

/�
i

. Again these expressions hold for continuous-time processes

with extensive birth and death rates, where time is intrinsically measured in units of

generations.

Higher moments

Although the mean fixation time can provide useful information, higher moments are

often sought after to provide a more complete picture. For example, the variance of

the random variable X,

var(X) =
⌦

X2

↵� hXi2 , (2.40)

which describes the spread of the values of X requires the computation of the second

moment, hX2i. We use the notation h·i to denote the average value. In general the
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r-th moment of the unconditional fixation time is defined by

⌧
(r)

i

=

1
X

t=0

tr [#
i

(t) � #
i

(t � 1)]

1
X

t=0

[#
i

(t) � #
i

(t � 1)]

=
1
X

t=0

tr [#
i

(t) � #
i

(t � 1)] , (2.41)

where again #
i

(t)�#
i

(t� 1) is the probability to reach either of the absorbing bound-

aries at time t. In analogy with Eq. (2.27) we can write

1
X

t=0

tr [#
i

(t+ 1) � #
i

(t)] = b
i

1
X

t=0

tr [#
i+1

(t) � #
i+1

(t � 1)]

+d
i

1
X

t=0

tr [#
i�1

(t) � #
i�1

(t � 1)]

+(1 � b
i

� d
i

)
1
X

t=0

tr [#
i

(t) � #
i

(t � 1)] . (2.42)

For the left-hand side we write

1
X

t=0

tr [#
i

(t+ 1) � #
i

(t)] =
1
X

t=1

(t � 1)r [#
i

(t) � #
i

(t � 1)]

=
1
X

t=1

r

X

k=0

✓

r

k

◆

(�1)r�ktk [#
i

(t) � #
i

(t � 1)] ,

= ⌧
(r)

i

+
r�1

X

k=0

✓

r

k

◆

(�1)r�k⌧
(k)

i

, (2.43)

where ⌧ (0)
i

= 1. Thus the r-th moment of the unconditional fixation time is dependent

on all lower moments. It satisfies the recursive equation [62,64,68,69]

⌧
(r)

i

= b
i

⌧
(r)

i+1

+ d
i

⌧
(r)

i�1

+ (1 � b
i

� d
i

)⌧ (r)
i

� s
(r�1)

i

, (2.44)

where s
(r�1)

i

=
P

r�1

k=0

�

r

k

�

(�1)r�k⌧
(k)

i

. The moments also satisfy the boundary condi-

tions ⌧ (r)
0

= ⌧
(r)

N

= 0.

Eq. (2.44) is of the same form as Eq. (2.36). As a result we can immediately write

down the closed-form expressions

⌧
(r)

1

= �
1

N�1

X

k=1

k

X

`=1

�s
(r�1)

`
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`

k

Y
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�
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, (2.45a)

⌧
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N�1

X
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Y
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�
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+
N�1

X
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X

`=1

�s
(r�1)

`

b
`

k

Y

m=`+1

�
m

. (2.45b)
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The derivation of conditional fixation time moments follows the same calculation.

Writing ✓(r)
i

= �
i

⌧
(r)

i|A, where ⌧
(r)

i|A is the r-th moment of the conditional fixation time

distribution, and s
(r�1)

i|A =
P

r�1

k=0

�

r

k

�

(�1)r�k⌧
(k)

i|A , this quantity satisfies

✓
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s
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b
`
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Y

m=`+1

�
m

, (2.46a)
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. (2.46b)

The conditional fixation time moments are then found via ⌧ (r)
i|A = ✓

(r)

i

/�
i

.

Once the moments have been calculated, the distribution can be recovered by

considering the moment generating function. This is defined as the Laplace2 transform

of the arrival time density [62] and is denoted as F
i

(z), where z is a continuous (and,

in general, complex) variable. For the unconditional arrival time we have

F
i

(z) =
1
X

t=0

e�zt [#
i

(t) � #
i

(t � 1)]

=
1
X

t=0

1
X

j=0

(�zt)j

j!
[#

i

(t) � #
i

(t � 1)]

=
1
X

j=0

(�z)j

j!

1
X

t=0

tj [#
i

(t) � #
i

(t � 1)]

=
1
X

j=0

(�z)j

j!
⌧
(j)

i

. (2.47)

The arrival time density is then recovered by performing the inverse Laplace transform

of Eq. (2.47) [12,62],

#
i

(t) � #
i

(t � 1) =
1

2⇡i

Z

eztF
i

(z)dz. (2.48)

In practice one computes a finite set of moments (say the first one hundred) and sums

these to obtain F
i

(z), which can then be inverted. In Chapter 4 we go beyond this

approach and compute closed-form expressions for the exact arrival-time distributions.

2Pierre-Simon Laplace (1749–1827).
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2.5 Equilibration

Sometimes the problem we are studying will not have absorbing boundaries. This may

be the case if mutations can happen during reproduction events, or due to migration

from an external population. In these scenarios, an extinct type of individual may

be spontaneously reintroduced. In birth–death processes, this corresponds to having

a non-zero birth rate from state i = 0 and non-zero death rate from state i = N ,

i.e. b
0

> 0 and d
N

> 0. We retain the conditions d
0

= 0 and b
N

= 0 such that the

state-space is still restricted to 0  i  N . Thus if the population is in state i = 0, the

only possible transition is to state i = 1 with rate b
0

. Hence, this is called a reflecting

boundary [62]. The same is true at the opposite boundary, where N ! N � 1 with

rate d
N

is the only transition from state i = N .

Such problems are no longer characterised by the fixation probability, but by the

stationary distribution of the population state. The timescale of this problem is the

time taken to approach this distribution, and is known as the mixing time [70].

Stationary distribution

If P
i

(t) is the probability to find the system in state i at time t, then the stationary

distribution is given by P st

i

= lim
t!1 P

i

(t). We can take the infinite-time limit of the

forward master equation (2.14) [or equivalently the discrete-time equation (2.17)] to

give

0 = b
i�1

P st

i�1

+ d
i+1

P st

i+1

� (b
i

+ d
i

)P st

i

for 0  i  N, (2.49)

where we have used lim
t!1 Ṗ

i

(t) = 0. Eq. (2.49) can be written in the form [12,62]

b
i�1

P st

i�1

� d
i

P st

i

= b
i

P st

i

� d
i+1

P st

i+1

, (2.50)

which states the that net flow of probability from state i� 1 to state i is the same for

all i. Considering the boundary terms, this net flow must be zero, i.e

b
i�1

P st

i�1

� d
i

P st

i

= 0 for 1  i  N. (2.51)
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This equation can be recursively solved to find P st

i

, which satisfies

P st

i

=
b
i�1

d
i

P st

i�1

=

 

i

Y

j=1

b
j�1

d
j

!

P st

0

. (2.52)

The value of P st

0

is then determined by the normalisation
P

N

j=0

P st

j

= 1. This gives

P st

0

=

 

N

X

j=0

j

Y

k=1

b
k�1

d
k

!�1

. (2.53)

Combining this with Eq. (2.52) gives

P st

i

=
�
i

P

N

j=0

�
j

, �
i

=
i

Y

j=1

b
j�1

d
j

. (2.54)

Mixing time

The timescale of the dynamics is characterised by the so-called mixing time, t
mix

[60, 70]. This is the time taken for the probability distribution, P(t), to come within

a specified distance of the stationary distribution Pst. That is to say t
mix

is the first

time at which d
⇥

P(t
mix

),Pst

⇤

= ". The distance between two distributions P and Q

commonly used in this context is [60, 70]

d[P,Q] =
1

2

N

X

i=0

|P
i

� Q
i

|. (2.55)

The factor 1/2 is used so that distributions which are maximally di↵erent have a

distance of one. For example, if P
i

= �
i,j

and Q
i

= �
i,k

, where �
↵,�

is the Kronecker

delta and j 6= k, then

d[P,Q] =
1

2

N

X

i=0

|P
i

� Q
i

| = 1

2

N

X

i=0

|�
i,j

� �
i,k

| = 1

2
(|1| + | � 1|) = 1. (2.56)

Example

In Fig. 2.2 we show the approach to equilibrium for a simple process: A population of

size N consists of two types of individual, A and B, with i individuals of type A. An

individual is randomly chosen in the population. If that individual is of type-A (chosen
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Figure 2.2. (a) The stationary distribution of the birth–death process described by
Eq. (2.57). Distributions are found from numeric integration of the master equation (2.14).
The stationary distribution (t = 1) is given by Eq. (2.54). (b) The distance between P(t)
and the stationary distribution (2.54) calculated using Eq. (2.55). Here t

mix

is illustrated for
" = 0.1. The parameters are � = 0.2, µ = 0.1, and N = 100, and the process was initialised
from P

i

(0) = �

i,10

.

with probability i/N), it switches to type-B with rate µN . If the chosen individual is

of type-B (probability (N � i)/N), it can switch to type-A with rate �N . Hence the

birth and death reaction rates are

b
i

= �⇥ (N � i), (2.57a)

d
i

= µ ⇥ i. (2.57b)

These reaction rates are extensive, and here we are considering a continuous-time

setup.

As shown in Fig. 2.2(a), soon after the dynamics has started the distribution broad-

ens and resembles a normal distribution. It approaches the stationary distribution

(labelled t = 1) at a decreasing rate. This is highlighted by considering the distance

to the stationary distribution using Eq. (2.55), and is shown in Fig. 2.2(b). The slope

of this approach corresponds to the slowest eigenvalue of the master equation.3 To

specify the time-to-equilibration we must impose a threshold, ", as described above.

This is illustrated in Fig. 2.2(b).

3Specifically of the matrix W shown in Eq. (2.15).
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2.6 Deterministic dynamics and stability analysis

In the above example the mean value of i at time t is given approximately by the

location of the peak of the distribution at that time. This mean evolves according to

an ordinary di↵erential equation (ODE). We define the mean value of i at time t as

hii = P

N

i=0

iP
i

(t), where the angle brackets indicate an average over many realisations

of the stochastic process up to time t. The ODE for the evolution of the mean is found

by multiplying the master equation (2.14) by i and summing over all allowed values,

such that

N

X

i=0

iṖ
i

(t) =
N

X

i=0

[ib
i�1

P
i�1

(t) + id
i+1

P
i+1

(t) � i(b
i

+ d
i

)P
i

(t)] . (2.58)

Using the boundary conditions d
0

= b
N

= 0, and the definition of hii, we can write

Eq. (2.58) as

dhii
dt

=
N

X

i=0

(b
i

� d
i

)P
i

(t) = hb
i

i � hd
i

i . (2.59)

We can now introduce the continuous variable x = lim
N!1 i/N , such that 0  x 

1. This is the deterministic limit; the distribution of x approaches a delta-function

centred at lim
N!1 hii /N , and hence the evolution of x is completely specified by the

ODE for the mean. This ODE is found by dividing Eq. (2.59) by N and taking the

limit N ! 1, which gives

ẋ = f
+

(x) � f�(x), (2.60)

where we have introduced the functions

f
+

(x) = lim
N!1

hb
i

i
N

= lim
N!1

bhii
N

= lim
N!1

b
Nx

N
(2.61a)

f�(x) = lim
N!1

d
Nx

N
. (2.61b)

The step hb
i

i = bhii does not hold in general as b
i

could be a non-linear function of i;

only in the deterministic limit can we make the assumption himi = hiim.
For the reaction scheme in Eq. (2.57), the deterministic equation is simply

ẋ = �(1 � x) � µx = �� (�+ µ)x. (2.62)
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Figure 2.3. The phase portrait of Eq. (2.62) which describes the time evolution of the
mean number of type-A individuals in the birth-death process specified by reactions (2.57).
As in Fig. 2.2, the parameters are � = 0.2 and µ = 0.1.

Plotting the phase portrait of this equation reveals the flow of the system, as shown

in Fig. 2.3. When ẋ > 0, the flow is to the right, and when ẋ < 0 the flow is to the

left. There exists a point at which ẋ = 0 (solid circle in Fig. 2.3). Setting ẋ = 0 in

Eq. (2.62) and solving for x recovers x⇤ = �/(� + µ). This is a fixed point [71]. In

this example it is stable as the flow from both sides is towards it. This stability can

be further illustrated by direct integration of Eq. (2.62) which gives

x(t) = x(0)e�(�+µ)t +
�

�+ µ

⇥

1 � e�(�+µ)t

⇤

. (2.63)

From this we can see lim
t!1 x(t) = x⇤.

For more general problems with non-linear reaction rates and in higher dimensions,

determining the stability of fixed points is not quite as simple. In such problems the

approach is to linearise the problem about the fixed point. Hence this method is known

as linear stability analysis [71].

The deterministic equations of motion obtained from the master equation (2.13)

can be recovered by following an analogous procedure to the one described above.
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Multiplying Eq. (2.13) by n and summing over n gives

X

n

nṖ
n

=
X

n

X

⌫

n
⇥

T ⌫
n�⌫Pn�⌫ � T ⌫

n

P
n

⇤

=
X

⌫

"

X

n

(n+ ⌫)T ⌫
n

P
n

�
X

n

nT ⌫
n

P
n

#

=
X

⌫

⌫

"

X

n

T ⌫
n

P
n

#

) d hni
dt

=
X

⌫

⌫ hT ⌫
n

i . (2.64)

Dividing by the system size N and taking the limit N ! 1 gives

ẋ =
X

⌫

⌫f⌫(x) = A(x), (2.65)

where x = lim
N!1 n/N and f⌫(x) = lim

N!1 T ⌫
Nx

/N .

Fixed points are found by solving A(x⇤) = 0. By expanding Eq. (2.65) about x⇤

to first order in u = x � x⇤, we arrive at

u̇ = J · u, (2.66)

where J
i,j

= @A
i

/@x
j

is evaluated at x = x⇤ and is known as the Jacobian.4 This

equation is linear in u and can be solved by expressing u as a linear combination of

the eigenvectors of J, such that

u(t) =
X

i

c
i

v(i)e�it, (2.67)

where �
i

are the eigenvalues of J with corresponding right-eigenvectors v(i). The

coe�cients c
i

are determined by the initial condition. If all eigenvalues have negative

real parts, then lim
t!1 u(t) = 0, and x will approach x⇤, which is a stable fixed point,

or attractor. If all eigenvalues have positive real parts then u will diverge and x⇤ is

an unstable fixed point. If the set of eigenvalues contains a mixture of positive and

negative real values, then there will be divergence in the eigendirections associated

with the positive eigenvalues and x⇤ is a saddle point. Non-zero imaginary parts of

4After Carl Gustav Jacob Jacobi (1804–1851), who will reappear in Chapters 5 and 6.
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t

Figure 2.4. The stability of fixed points in two dimensions can be classified in terms of the
determinant [� = det(J)], trace [⌧ = Tr(J)], and discriminant (⌧2 � 4�) of the Jacobian J.
Figure is adapted from Ref. [71].

the eigenvalues are associated with cycles and spirals, but these do not feature in this

thesis [71].

The case of a two-dimensional system will feature in Chapter 5. In this case we can

infer the eigenvalue properties from the determinant (�), trace (⌧), and discriminant

(⌧ 2 � 4�) of the Jacobian J, as characterised in Fig. 2.4.

2.7 Continuous state-space approximations

Exact solutions of the master equation are usually non-existent; for most cases it is

analytically intractable. However, there exists a collection of approximation schemes

that allow us to make further analytical progress. These schemes involve replacing the

discrete variables n by their continuous analogues x = n/N . This allows the master

equation to be approximated by a partial di↵erential equation (PDE), namely the

Fokker–Planck equation.5

Fokker–Planck equation

The simplest way to arrive at a PDE that describes the probability density is to directly

substitute x = n/N into the master equation (2.13). We can introduce the function

f⌫(x) = T ⌫
Nx

/N , which is reminiscent of the function introduced in Eq. (2.65) without

5Adriaan Fokker (1877–1972) and Max Planck (1858–1947).
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imposing the infinite system-size limit. We also introduce the continuous probability

density ⇢(x, t) to replace the discrete distribution P
n

(t). With this we can rewrite the

master equation (2.13) as

⇢̇(x, t) ⇡
X

⌫

h

Nf⌫

⇣

x � ⌫

N

⌘

⇢
⇣

x � ⌫

N
, t
⌘

� Nf⌫(x)⇢(x, t)
i

. (2.68)

If we now consider N to be a large (but not infinite) parameter, then we can expand

the above equation as a Taylor series about x. Truncating the expression up to terms

O (N�1), we can write

⇢̇(x, t) =
X

⌫

(

�
X

i

@

@x
i

[⌫
i

f⌫(x)⇢(x, t)] +
1

2N

X

i,j

@2

@x
i

@x
j

[⌫
i

⌫
j

f⌫(x)⇢(x, t)]

)

= �
X

i

@

@x
i

[A
i

(x)⇢(x, t)] +
1

2N

X

i,j

@2

@x
i

@x
j

[B
i,j

(x)⇢(x, t)] , (2.69)

where A(x) =
P

⌫ ⌫f⌫(x) as described in Eq. (2.65), and where the di↵usion matrix

B(x) has elements

B
i,j

=
X

⌫

⌫
i

⌫
j

f⌫(x). (2.70)

Eq. (2.69) is called the Fokker–Planck equation. The first term is representative of

the deterministic drift, and the second di↵usion term represents the spread of the prob-

ability density due to the stochasticity [72]. There is a complication that needs to be

considered with this derivation; we need to ensure that the equation maintains a pos-

itive probability density. Including a higher number of terms in Eq. (2.69) [O �

Nk�2

�

]

would violate this condition unless the infinite series is considered. This is the Pawula

theorem [73,74].

This derivation is closely related to two rigorous approximation schemes. These

are the Kramers–Moyal6 expansion [75,76] which considers a truncated series of jump

moments [72], and the van Kampen7 system-size expansion which explicitly considers

a large parameter to recover an equation which describes the fluctuations about the

deterministic trajectory (2.65) [12]. The Fokker–Planck approximation of the master

equation does not feature prominently in this thesis, but for further discussion about

its derivation from the master equation see Refs. [12, 72].

6Hendrik Kramers (1894–1952) and José Enrique Moyal (1910–1998).
7Nico van Kampen (1921–2013).
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Stochastic di↵erential equation

The process described by the master equation (2.13) is a discrete jump process. The

Fokker–Planck equation (2.69) describes the evolution of a continuous variable that is

a↵ected by some noise [12]. We write this as

ẋ = A(x) +
1p
N
G(x) · ⌘(t), (2.71)

where B = G ·GT, and the ⌘
i

(t) random variables drawn from a Gaussian distribution

with zero mean and correlation function

h⌘
i

(t)⌘
j

(t0)i = �
i,j

�(t � t0). (2.72)

Eq. (2.71) is known as a stochastic di↵erential equation (SDE) or a Langevin equa-

tion, after Paul Langevin (1872–1946). It is an extension to the deterministic equa-

tion (2.65), which can be recovered by taking the limit N ! 1 in Eq. (2.71).

Again there are complications with this derivation, including the famous Itō–

Stratanovich8 dilemma [12,72,74]. This states that Eq. (2.71) alone is not well-specified

if G is dependent on the state of the system x. This is termed multiplicative noise,

and if this is the case it must be stated whether Eq. (2.71) is to be interpreted in the

Itō or Stratanovich sense. Further discussion of this issue here would only pose as a

distraction and would be of no value for the remainder of this thesis. More details can

be found in Refs. [12, 72, 74]. SDEs only appear in this thesis in Chapter 6, and we

will always use the Itō interpretation. Eq. (2.71) should also be interpreted as an Itō

SDE.

2.8 Evolutionary game theory

The interactions between individuals in a population can sometimes be more com-

plicated than “A dies with constant rate µ”. Instead, this interaction rate may have

a non-linear dependence on the state of the population. These interactions can be

8Kiyoshi Itō (1915–2008) and Ruslan Stratanovich (1930–1997).
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formalised in an evolutionary game [14, 36–39]. Such games can be used to describe

conflict over food or territory, cheating in resource allocation, as well as interactions

between variants of a gene [42, 69, 77–79]. In an evolutionary normal-form game each

individual can be associated with one out of a finite set of strategies. A payo↵ matrix

quantifies the reward received by a given individual when it interacts with another

individual [38].

The dynamics of populations interacting in such a game are often described by

deterministic replicator equations (discussed at the end of this section) or similar dif-

ferential equations [37,39,80]. While deterministic dynamics are useful to understand

the action of selection, a stochastic approach is required to understand the impact

of fluctuations in finite populations [81, 82]. Deterministic approaches fail to capture

e↵ects such as fixation and extinction, or the convergence to a stationary distribution

in systems with mutation [60,63,83–85].

The interaction between two individuals in a two-strategy evolutionary game is

characterised by the payo↵ matrix,

A B

A R S

B T P.

(2.73)

A type-A individual encountering another of its kind receives the reward R, and it

receives the sucker’s payo↵ S when interacting with a type-B individual. In turn, an

individual of type B interacting with an individual of type A obtains the temptation

payo↵ T , and P is the punishment payo↵ for each individual if they are both of type

B.

If there are i individuals of type A in the population and N � i individuals of type

B, the expected payo↵s for each type of player are

⇡
A

(i) =
i � 1

N � 1
R +

N � i

N � 1
S, (2.74a)

⇡
B

(i) =
i

N � 1
T +

N � i � 1

N � 1
P. (2.74b)
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There exist three general types of two-player two-strategy evolutionary games which

can be described by the payo↵ matrix (2.73) and payo↵s (2.74):

Dominance: If R > T and S > P , then playing strategy A will return a higher payo↵

irrespective of the composition of the population. This type is then always favoured.

Likewise, if the inequalities are reversed such that T > R and P > S, then playing

strategy B will always return a higher payo↵. This latter scenario captures the well-

studied Prisoner’s dilemma [14]. This also leads to the concept of Nash equilibria,

after John Nash (1928–2015). A Nash equilibrium exists if, with all players playing

the same strategy, no single deviation from that strategy can lead to an increase in

payo↵ [14, 86]. In the Prisoner’s dilemma, the temptation to cheat (strategy B) is

greater than the reward to cooperate with another cooperator (strategy A), and the

punishment for mutual defection is a better option than receiving the sucker’s payo↵

by cooperating with a defector. Hence defection, or strategy B, is the Nash strategy

in this game.

Coexistence: If T > R and S > P , then choosing the opposite strategy to the other

player yields the highest payo↵. Hence the payo↵ is maximised in a heterogeneous

population. There exists no pure-strategy Nash equilibrium in this setup.

Coordination: If R > T and P > S, then payo↵ is maximised when both players

adopt the same strategy. In this case there is a bi-stability and both strategies are

Nash equilibria [14].

The rate at which strategies spread through the population is a function of the

payo↵s in the evolutionary game. A constant parameter � > 0, the so-called intensity

of selection, is introduced to control the how much the game a↵ects the population

dynamics. It can be thought of as the inverse temperature. For � ! 1 (low temper-

ature), the dynamics is controlled by the evolutionary game. For � ! 0 (high tem-

perature), the dynamics is dominated by stochasticity. The regime of weak selection

is interesting as it allows for perturbative treatment to obtain analytic results [87,88].

Many functional forms of the mapping between payo↵s and population dynamics are
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possible, but the update rules can be divided into two distinct classes [89]:

Pairwise-comparison process: Here two individuals are randomly chosen from the

population, and the second adopts the strategy of the first with a probability which

is a function of the payo↵ di↵erence. For example, if a type-A individual is chosen

first, and a type-B chosen second, then the type-B adopts strategy A with probability

determined by g[��⇡(i)], where �⇡(i) = ⇡
A

(i) � ⇡
B

(i). The reverse interaction (A

adopting strategy B) occurs with probability g[���⇡(i)]. The exact functional depen-
dence has to satisfy the basic properties that 0  g  1 and that it is a monotonically

increasing function of payo↵. Common forms for this include the linear mapping [60]

g[±��⇡(i)] = 1

2

⇥

1 ± ��⇡(i)
⇤

, (2.75)

or the Fermi9 mapping [87]

g[±��⇡(i)] = 1

1 + e⌥��⇡(i)

. (2.76)

This process leads to birth and death rates (extensive) of the form

b
i

=
i(N � i)

N
g[��⇡(i)], (2.77a)

d
i

=
i(N � i)

N
g[���⇡(i)], (2.77b)

which are similar for both the linear and the Fermi mappings as shown in Figs. 2.5(a)

and (b). It is easy to show that g[+��⇡(i)] + g[���⇡(i)] = 1 for both Eq. (2.75)

and Eq. (2.76). Thus the total rate at which the population exits state i is simply

i(N � i)/i, as shown in Fig. 2.5(c).

Fitness-based process: Here individuals reproduce with a rate determined by the

individuals’ own expected payo↵. There is no comparison in this process. After a

reproduction event a random individual is removed from the population to conserve

the fixed population size. Again the functional form of the payo↵ dependence must

be monotonically increasing. An exponential mapping is a frequent choice, such that

9Enrico Fermi (1901–1954).



2.8. EVOLUTIONARY GAME THEORY 49

Á

Á
Á
Á
Á
Á Á

Á Á Á Á Á Á Á Á
Á
Á
Á
Á
Á
Á·

·
·
·
· ·

· · · · · · · · · · ·
·
·
·
·Û

Û

Û

Û
Û
Û
Û
Û Û

Û Û Û Û Û
Û
Û
Û
Û

Û

Û

Û
0 5 10 15 20

0
1
2
3
4
5

i

b i

HaL

Á
Á
Á
Á
Á
Á
Á
Á Á

Á Á Á Á Á Á Á
Á
Á
Á
Á

Á·
·
·
·
·
· ·

· ·
· · · · · · ·

·
·
·
·
·Û

Û

Û

Û
Û
Û
Û
Û
Û
Û Û

Û Û Û Û
Û
Û

Û

Û

Û

Û
0 5 10 15 20

0
1
2
3
4
5

i

d i

HbL

Á
Á
Á
Á
Á
Á
Á Á

Á Á Á Á Á Á Á
Á
Á
Á
Á
Á
Á·

·
·
·
·
· ·

· · · · · · · · ·
·
·
·
·
·Û

Û

Û

Û

Û
Û
Û
Û
Û Û

Û Û Û Û
Û
Û
Û

Û

Û

Û

Û
0 5 10 15 20

0

2

4

6

8

10

i

b i
+
d i

HcL

Á
Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á

· · · · · · · · · · · · · · · · · · · · ·

Û Û Û Û Û Û Û Û Û Û Û Û Û Û Û Û Û Û Û Û Û

Á Linear pairwise
· Fermi pairwise
Û Exponential fitness

0 5 10 15 20
0

1

2

3

i

b i
êd i

HdL

Figure 2.5. (a) and (b) show the birth rates and death rates from Eqs. (2.77) and (2.79).
(c) shows the total exit rate from state i, which is b

i

+ d

i

. (d) shows the ratio of b

i

and d

i

. If
this ratio is greater than one then it is more likely to hop to the right than the left. For this
example, which represents a coexistence game, the payo↵ matrix parameters are R = 1.0,
S = 1.5, T = 1.9, and P = 1.0, the intensity of selection is � = 0.5 and the system size is
N = 20.

an individual’s reproductive fitness is given by [90,91]

f
A

(i) = e�⇡A(i), (2.78a)

f
B

(i) = e�⇡B(i). (2.78b)

The birth and death rates are then given by

b
i

=
i(N � i)

N

f
A

(i)

f(i)
, (2.79a)

d
i

=
i(N � i)

N

f
B

(i)

f(i)
, (2.79b)

where the fitnesses are scaled by the mean population fitness f(i) = [ie�⇡A(i) + (N �
i)e�⇡B(i)]/N . This ensures events occur on the same timescale as the above pairwise

comparison process, i.e. Eq. (2.79) is of similar magnitude to Eq. (2.77), as shown in

Figs. 2.5(a), (b) and (c). Interestingly the ratio of birth and death rates is identical for
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the Fermi pairwise-comparison process and the exponential fitness process, as shown

in Fig. 2.5(d) [89].

The reaction rates in Eqs. (2.77) and (2.79) are the update rules of the Moran10

process [64,92] with frequency-dependent selection. These rules have been widely used

in evolutionary game theory [14, 65, 93]. The Moran process represents a birth–death

process in which the population size remains constant, and by construction it has

absorbing states at i = 0 and i = N . The process can be represented by the reaction

scheme

A+B �! A+ A, (2.80a)

A+B �! B +B. (2.80b)

Finally, the above interaction schemes can easily be generalised for larger strategy

spaces [14, 38]. However only 2 ⇥ 2 games will appear in this thesis.

Replicator dynamics

By considering the deterministic dynamics of the process specified by the reactions (2.80),

we can write

ẋ = x(1 � x) [F
A

(x) � F
B

(x)] , (2.81)

where F
A

(x) and F
B

(x) represent the frequency-dependent reaction rates, e.g. F
A

(x) =

g [��⇡(Nx)]. Expanding this equation gives

ẋ = x [F
A

(x) � xF
A

(x) � (1 � x)F
B

(x)]

= x
⇥F

A

(x) � F(x)
⇤

. (2.82)

This is called the replicator equation as the fitness of A approaches the mean popula-

tion fitness F = xF
A

(x) + (1 � x)F
B

(x) [37, 39,80].

10Pat Moran (1917–1988).
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2.9 Numerical simulation methods

Numerical simulations of a stochastic process can serve many purposes. They can

be used to confirm the correctness of analytic work or verify if assumptions made

in the analysis are valid. They can also present some physical intuition about how

a system evolves, and this can in turn guide the analytic procedure. The aim is to

generate random numbers that are distributed according to the solution of the master

equation.

Monte-Carlo methods

For a discrete-time system that is described by the master equation (2.11), the cor-

responding process is easily described: if the system is in state n at time t, then at

time t+�t the system will be in state n0 6= n with probability w
n

0
,n

�t, or will remain

in state n with probability 1 � P

n

0 6=n

w
n

0
,n

�t. The simulation of this process follows

directly from this. Namely, we set n(t) = n and evaluate the values of w
n

0
,n

�t and

1�P

n

0 6=n

w
n

0
,n

�t. These values are the weights associated with choosing the value of

n(t+�t), such that only a single random number needs to be drawn.

This discrete-time method, however, su↵ers from two fundamental flaws. Firstly,

only a single reaction can occur in a single time-step, and secondly, a large number

of time-steps may pass by without the system changing state. Choosing a very small

time-step to cure the first problem amplifies the second, and choosing a long time-

step to cure the second problem amplifies the first flaw. To fix these problems we

will consider a continuous-time setup where the length of the time-step is a random

number that is dependent on the state of the system.

Gillespie algorithm

Trying to deduce the process that is described by the continuous-time master equa-

tion (2.13) is significantly more di�cult than the discrete-time case. We now need

to answer two questions: which is the next reaction to occur, and at what time does
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this happen? As both of these quantities are random variables, we need to compute

the joint probability density p(⌫, ⌧), which is the probability density that the next

reaction to occur from n is to n+ ⌫, and this happens after a period of time ⌧ [94]. If

we consider the reaction to occur in the time interval [t + ⌧, t + ⌧ + d⌧ ], then we can

write

p(⌫, ⌧)d⌧ = P
0

(n, t+ ⌧ |n, t)T ⌫
n

d⌧, (2.83)

where P
0

(n, t + ⌧ |n, t) is the probability that no reactions have occurred in the time

interval [t, t + ⌧ ]. This quantity is found by considering only transitions out of state

n in the master equation (2.13). By relabelling the initial condition in Eq. (2.12), we

can write,
dP

0

(n, t+ ⌧ |n, t)
d⌧

= �
X

⌫

T ⌫
n

P
0

(n, t+ ⌧ |n, t). (2.84)

This can be directly integrated to show that P
0

(n, t + ⌧ |n, t) decreases exponentially
with ⌧ ,

P
0

(n, t+ ⌧ |n, t) = exp

"

�
 

X

⌫

T ⌫
n

!

⌧

#

. (2.85)

The value
P

⌫ T
⌫
n

= a
0

(n) is the total rate at which the system leaves state n. Sub-

stituting this into Eq. (2.83) we can write

p(⌫, ⌧) =
T ⌫
n

a
0

(n)
⇥ a

0

(n) exp[�a
0

(n)⌧ ]. (2.86)

Hence the probability density p(⌫, ⌧) can be decomposed into two independent densi-

ties: the first describes the choice of reaction with weight T ⌫
n

/a
0

(n), and the second

describes the time-step which is exponentially distributed. Hence by drawing two

independent random numbers for each time-step, we can simulate a process that is

distributed exactly as described by the solution of the continuous-time master equa-

tion (2.12). This procedure was popularised in Ref. [94], and is known as the Gillespie

algorithm.



Chapter 3

Finite populations in switching en-

vironments

3.1 Introduction

As discussed in the previous section, selection acts on di↵erent phenotypes, such as

‘resident’ and ‘mutant’, and changes the population composition. The environment in

which a population evolves determines the direction of selection. Changes in the state

of the environment can alter these selective pressures such that di↵erent phenotypes

are selected for as time progresses. Characterising the evolutionary dynamics of the

population in such a system is non-trivial, but we will shed light on this issue in this

Chapter. This work originally appeared in [44], although some of the notation has

been changed to fit in with the rest of this thesis.

Time-varying environments are relevant in the evolution of bacterial populations

subject to environment modulations by a host [95, 96], or varying antibiotic stress

[97]. An illustrative example is the evolution of normal ‘sensitive’ cells and resistant

‘persister’ cells. A stochastic model of this was examined by Kussell et al. [98], where

periods of antibiosis were turned on and o↵. During times of antibiotic stress the

growth rate of normal cells was reduced, but the resistant cells sustain population

levels. Stochastic switching between the phenotypes ensured that any lost phenotypes

53
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Figure 3.1. A stochastic trajectory of a population subjected to periodic antibiotic stress.
Gray horizontal bars indicate the absence of the drug, and white spaces indicate periods of
antibiosis. Dark blue lines represent the number of wild-type cells which are sensitive to the
drug (and hence their numbers decrease during antibiosis). The pale blue line represents the
number of resistant or persister phenotypes, which are able to rescue the population from
extinction. Orange and green lines should be ignored in this instance. Figure is taken from
Ref. [98].

could be reintroduced. This can be seen from the simulation trajectory of this process

shown in Fig. 3.1.

Further mathematical analysis was carried out in the large-population limit in the

absence of intrinsic stochasticity. The population dynamics are then controlled by the

di↵erential equation [98]

dn

dt
= A

"(t)

· n(t), (3.1)

where n(t) is the population vector that describes the number of individuals of each

species at time t, and "(t) is the state of the environment which takes discrete values.

The environment can be periodic as shown in Fig. 3.1, or more generally can follow

a continuous-time stochastic process. The matrix A
"(t)

describes the growth of the

number of individuals of each species, including changes from one species to another,

when the environment is in state "(t).

The model (3.1) was supported by Acar et al. [99] who provided experimental
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evidence by modifying the environment in which two strains of yeast grow. More

complicated studies of dynamics in switching environments rely on cells ‘sensing’ the

environment [100] and on the history or information of the environment that is col-

lected during a cell’s lifetime [101,102]. These examples illustrate that the assumption

of an interaction structure independent of time is not always realistic. At the same time

it is largely an open question how complex interactions between phenotypes together

with spontaneous changes in the environment influence the evolutionary dynamics.

While deterministic dynamics are useful to understand the action of selection, a

stochastic approach is necessary to capture e↵ects such as fixation and extinction.

Environmental variability in stochastic systems has been investigated in predator–

prey models [103]. It has also been studied in the context of evolutionary games,

where (continuous) extrinsic noise is added to model parameters [104].

Rather than selecting a specific form for the dynamics, we will use the generic birth–

death framework such that our results apply to a wide class of population dynamics.

For the environmental dynamics, we will follow the work of Kussell et al. [98] and

consider an environment that stochastically switches between a discrete set of states.

It is convenient to describe the dynamics in discrete time, as will be seen below. The

model we use is described in detail in Sec. 3.2. In Sec. 3.3 the theory is developed that

allows us to calculate fixation probabilities and mean fixation times of a rare mutant

under fluctuating environmental conditions. We then expand on the two-environment

scenario where further analytical progress can be made. To illustrate our theoretical

results we study the fixation properties in an evolutionary game that stochastically

switches between a coexistence game and a coordination game in Sec. 3.4. We deter-

mine environmental conditions under which the success of a rare invading mutant is

maximal. This is seen to occur at a non-trivial combination of switching rates.

If we introduce mutations into the dynamics, the possibility of fixation and extinc-

tion is removed as a lost species can be reintroduced. Instead we seek to describe the

stationary distribution of a population evolving in a switching environment in Sec. 3.5.

We derive approximations for this stationary distribution, which we show are valid for
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a large range of switching rates in the two-environment scenario.

3.2 Model

We consider populations consisting of a fixed number, N , of individuals. Each indi-

vidual can be of one of two types, A or B, which we refer to as ‘mutant’ and ‘resident’,

respectively. The population is well mixed; every individual can interact with any

other individual. The state of the population (without considering the environmental

dynamics) is fully characterised by the number, i, of individuals of type A. The re-

maining N � i individuals are then of type B. We furthermore assume that at any one

time the environment can be in one of ⌦ discrete states, labelled � 2 ⇤, where ⇤ is

the space of states of the environment (|⇤| = ⌦). Hence the state of the entire system

at any time is given by the pair (i, �).

The discrete-time birth–death dynamics of the population for a given environment,

�, is specified by the transition probabilities b(�)
i

and d
(�)

i

of a one-step process. This is

analogous to the birth and death rates discussed in Sec. 2.3. Specifically, if the system

is in state (i, �) the population transitions to state i + 1 in the next time-step with

probability b
(�)

i

. Similarly the state of the population in the next time step is i � 1

with probability d
(�)

i

. These transitions are shown as short curved arrows in Fig. 3.2.

With probability 1 � b
(�)

i

� d
(�)

i

the population remains in state i. We always assume

that b(�)
i

� 0, d(�)
i

� 0, and b
(�)

i

+ d
(�)

i

 1 for all (i, �). Throughout this Chapter we

will use the time-step �t = 1, as described in Sec. 2.3. The quantity t then counts the

number of time-steps. All times shown in figures will be expressed in generations, i.e.

t/N .

For now we will assume that the states i = 0 (all-type-B) and i = N (all-type-A)

are absorbing, i.e. b
(�)

0

= 0 and d
(�)

N

= 0 for all � 2 ⇤. In the absence of further

mutation events a type, once absent, can never be re-introduced. If mutations occur

during the dynamics, then the states i = 0 and i = N are no longer absorbing and

the system converges to a unique, non-trivial stationary state. We consider this case

in Sec. 3.5.
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0 1 … i−1 i i+1 … N−1 N

0 1 … i−1 i i+1 … N−1 N

environment σ

environment σ!

b

(�)
i

d

(�)
i

d

(��)
i

b

(��)
i

µ

�

�
,�

µ

�,�

�

�

(�)
i

Figure 3.2. A population undergoes a one-step birth–death process, such that given the
population is in state i, in one time-step it may transition to i � 1 or i + 1, or remain at i.
The states i = 0 and i = N are absorbing in all environments (no arrows out of these states).
The transition probabilities are dependent on the state of the environment, indicated by solid
vs. dashed arrows in environments � and �

0, respectively. The environment switches from

state � to �

0 with probability µ

�

0
,�

in any one time-step. The quantity �

(�)

i

represents the
probability of fixation, as discussed in Sec. 3.3.

In our approach the environment evolves from one state to another independently of

the state of the population. This is a simplification that allows the following analysis

to take place, but this model still captures a wide array of natural scenarios. In this

discrete-time setup we take the dynamics of the environment to be a simple Markov

chain, described by the transition matrix M of size ⌦ ⇥ ⌦. The entry µ
�

0
,�

of the

matrix M represents the probability that the environment changes to state �0 in the

next time-step, if it is currently in state �, as shown in Fig. 3.2. The matrix M is a

stochastic matrix,
P

�

0 µ
�

0
,�

= 1 for all � 2 ⇤. In other words all columns sum to one.

To ensure this we set µ
�,�

= 1 �P

�

0 6=�

µ
�

0
,�

.

If the system is in state (i, �) at a given time, it may transition to 3⌦ possible

states in any one time-step. These are given by (i, �0), (i+1, �0) and (i� 1, �0), where

�0 2 ⇤ can be any of the ⌦ states of the environment. If we write R
(j,�

0
),(i,�)

for the

probability of a transition from (i, �) to (j, �0), we have

R
(i+1,�

0
),(i,�)

= µ
�

0
,�

b
(�)

i

, (3.2a)

R
(i�1,�

0
),(i,�)

= µ
�

0
,�

d
(�)

i

, (3.2b)

R
(i,�

0
),(i,�)

= µ
�

0
,�

⇣

1 � b
(�)

i

� d
(�)

i

⌘

. (3.2c)
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No transitions from (i, �) to (j, �0) can occur when |i � j| > 1. In this setup the

birth and death probabilities are determined by the state of the environment at the

beginning of the discrete time-step.

In analogy with Eq. (2.17), the master equation for the probability to be in state

(i, �) is given by

P
(i,�)

(t+ 1)

=
X

�

02⇤

⇥

R
(i,�),(i�1,�

0
)

P
(i�1,�

0
)

(t) +R
(i,�),(i+1,�

0
)

P
(i+1,�

0
)

(t) +R
(i,�),(i,�

0
)

P
(i,�

0
)

(t)
⇤

=
X

�

02⇤

µ
�,�

0

h

b
(�

0
)

i�1

P
(i�1,�

0
)

(t) + d
(�

0
)

i+1

P
(i+1,�

0
)

(t) +
⇣

1 � b
(�

0
)

i

� d
(�

0
)

i

⌘

P
(i,�

0
)

(t)
i

.

(3.3)

The backward equation, in analogy with Eq. (2.20), is

Q
(j,�

00
);(i,�)

(t+ 1)

=
X

�

02⇤

h

R
(i+1,�

0
),(i,�)

Q
(j,�

00
);(i+1,�

0
)

(t) +R
(i�1,�

0
),(i,�)

Q
(j,�

00
);(i�1,�

0
)

(t)

+R
(i,�

0
),(i,�)

Q
(j,�

00
);(i,�

0
)

(t)
i

=
X

�

02⇤

µ
�

0
,�

h

b
(�)

i

Q
(j,�

00
);(i+1,�

0
)

(t) + d
(�)

i

Q
(j,�

00
);(i�1,�

0
)

(t) +
⇣

1 � b
(�)

i

� d
(�)

i

⌘

Q
(j,�

00
);(i,�

0
)

(t)
i

.

(3.4)

3.3 Mathematical framework

We now demonstrate how to calculate the fixation probability and mean fixation

times in birth–death processes with an arbitrary number of environmental states.

This framework is based on the discrete-time process. In the associated publication,

Ref. [44], we present similar methods for analysing continuous-time processes alongside

the discrete-time formulation.

Fixation probability

The fixation probability, �(�)

i

, is the probability that the system ends up in the ab-

sorbing state with N individuals of type A, conditioned on the initial state (i, �). The
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probability of fixation of a single mutant, �(�)

1

, is of particular interest; rare mutations

can introduce a previously absent strategy into the population, and typically there is

only one individual of this novel type initially. To obtain an expression for the fixation

probability, we follow Sec. 2.4 and introduce the �(�)

i

= lim
t!1

P

�

00 Q
(N,�

00
);(i,�)

(t). We

sum over all final environmental states (�00) as we are only interested in the probability

of type A taking over the population, not the environment in which fixation is reached.

From Eq. (3.4) we obtain

�
(�)

i

=
X

�

02⇤

µ
�

0
,�

h

b
(�)

i

�
(�

0
)

i+1

+ d
(�)

i

�
(�

0
)

i�1

+
⇣

1 � b
(�)

i

� d
(�)

i

⌘

�
(�

0
)

i

i

. (3.5)

This is to be solved along with the boundary conditions �(�)

0

= 0 and �(�)

N

= 1 for all

� 2 ⇤.

To obtain a formal solution, we introduce  (�)

i

=
P

�

0 µ
�

0
,�

�
(�

0
)

i

. The boundary

conditions �(�)

0

= 0 and �(�)

N

= 1 translate into  (�)

0

= 0 and  (�)

N

= 1 for all � 2 ⇤,

where the second expression follows from M being a stochastic matrix. With this

notation we have

�
(�)

i

= b
(�)

i

⇣

 
(�)

i+1

�  
(�)

i

⌘

� d
(�)

i

⇣

 
(�)

i

�  
(�)

i�1

⌘

+  
(�)

i

. (3.6)

In matrix form we can write  
i

= �
i

· M, where  
i

and �
i

are row vectors with ⌦

components.1 Using �
i

=  
i

· M�1, we obtain

⇣

 
(�)

i+1

�  
(�)

i

⌘

= �
(�)

i

⇣

 
(�)

i

�  
(�)

i�1

⌘

+
1

b
(�)

i

h

( 
i

· M�1)(�) �  
(�)

i

i

, (3.7)

where �(�)
i

= d
(�)

i

/b
(�)

i

. This formalism requires the matrix M to be invertible. How-

ever, it will be shown that there is no anomalous behaviour when det(M) = 0.

To keep the notation compact we define the di↵erence variable �(�)
i

=  
(�)

i

�  
(�)

i�1

.

Using  (�)

0

= 0, we have
P

i

j=1

�
(�)

j

=  
(�)

i

. With this notation we can write Eq. (3.7)

in the following form

�
(�)

i+1

= �
(�)

i

�
(�)

i

+
1

b
(�)

i

"

i

X

j=1

�
j

· �M�1 � I
�

#

(�)

, (3.8)

1As the backward equation is the adjoint of the forward equation, the column vectors of probability
are transposed to give row vectors.
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where I is the ⌦⇥⌦ identity matrix. This relation expresses the vector �
i+1

in terms

of the vectors �
1

,�
2

, . . . ,�
i

. We can therefore express all vectors �
i

(i=2, . . . , N)

in terms of �
1

. The constraint
P

N

i=1

�
i

=  
N

= (1, . . . , 1) then determines �
1

self-

consistently. We note that the resulting set of equations is linear in the set
�

�
(�)

1

 

.

Hence a solution can be obtained in closed form, in principle. In practice one inverts

the linear system using one of the standard algebraic manipulation packages. Once

�
1

has been found, the other components �
i

, with i = 2, . . . , N , can be computed via

Eq. (3.8). One then uses �
i

=
P

i

j=1

�
j

·M�1 to find the fixation probabilities starting

with i individuals of type A in environment �, �(�)

i

.

We note here that algebraically inverting the linear system (3.8) when N is large is

di�cult due to the increasing number of terms in the corresponding expressions. Thus,

at present, this theory is limited computationally to relatively small system-sizes. We

have shown it is accurate up to N = O (100).

In the case of a single environment, ⌦ = 1, the matrix M is simply the 1 ⇥ 1

identity matrix, and the solution to Eq. (3.8) simplifies to the well-known result for

birth–death processes, Eq. (2.24) [14, 62, 65,67].

Mean unconditional fixation time

We write t(�)
i

for the expected number of time-steps taken to reach any one of the two

absorbing states, given that the system is started in state (i, �). Just like we did in

Eq. (2.25), we define #(�)

i

(t) =
P

�

00

⇥

Q
(0,�

00
);(i,�)

(t) +Q
(N,�

00
);(i,�)

(t)
⇤

and

t
(�)

i

=
1
X

t=0

t
h

#
(�)

i

(t) � #
(�)

i

(t � 1)
i

. (3.9)

The mean fixation times fulfil the boundary conditions t
(�)

0

= t
(�)

N

= 0. Proceeding

as described in Sec. 2.4, from the backward master equation (3.4) we can express the

mean unconditional fixation time as

t
(�)

i

=
X

�

02⇤

µ
�

0
,�

h

b
(�)

i

t
(�

0
)

i+1

+ d
(�)

i

t
(�

0
)

i�1

+
⇣

1 � b
(�)

i

� d
(�)

i

⌘

t
(�

0
)

i

i

+ 1. (3.10)



3.3. MATHEMATICAL FRAMEWORK 61

Introducing the variable ⇠(�)
i

=
P

�

0 µ
�

0
,�

t
(�

0
)

i

, we have

t
(�)

i

= b
(�)

i

⇣

⇠
(�)

i+1

� ⇠
(�)

i

⌘

� d
(�)

i

⇣

⇠
(�)

i

� ⇠
(�)

i�1

⌘

+ ⇠
(�)

i

+ 1. (3.11)

With the notation ⌫(�)
i

= ⇠
(�)

i

� ⇠
(�)

i�1

, and using
P

i

j=1

⌫
(�)

j

= ⇠
(�)

i

, we arrive at

⌫
(�)

i+1

= �
(�)

i

⌫
(�)

i

+
1

b
(�)

i

"

i

X

j=1

⌫
j

· �M�1 � I
�

#

(�)

� 1

b
(�)

i

. (3.12)

This relation allows one to express all vectors ⌫
i

(i = 2, . . . , N) in terms of ⌫
1

. The

constraint
P

N

i=1

⌫
i

= (0, . . . , 0) from the boundary condition then determines ⌫
1

, and

the mean unconditional fixation times are computed using t
i

=
P

i

j=1

⌫
j

· M�1. As

described previously, the t
i

are expressed in units of elementary time-steps. In the

results presented below, times are expressed in generations, i.e. we plot t/N on the

time axes.

Mean conditional fixation time

We write t
(�)

i|A for the mean fixation time conditioned on absorption in the all-A state,

given that the system is initially in state (i, �). To find this conditional fixation time,

we proceed along similar lines as per the derivation of Eq. (2.39). We introduce the

variable '(�)

i

(t) =
P

�

00 Q
(N,�

00
);(i,�)

(t), and define the mean conditional fixation time as

t
(�)

i|A =
1

�
(�)

i

1
X

t=0

t
h

'
(�)

i

(t) � '
(�)

i

(t � 1)
i

. (3.13)

From the backward master equation (3.4), it can be seen that t(�)
i|A satisfies

�
(�)

i

t
(�)

i|A =
X

�

02⇤

µ
�

0
,�

h

b
(�)

i

�
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0
)
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0
)
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�
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(�)

i

⌘
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0
)

i
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)

i

i

+ �
(�)

i
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(3.14)

Introducing the variable ✓(�)
i

= �
(�)

i

t
(�)

i|A , which has boundary conditions ✓(�)
0

= ✓
(�)

N

= 0,

and ⇣(�)
i

=
P

�

0 µ
�

0
,�

✓
(�

0
)

i

, we have

✓
(�)

i

= b
(�)

i

⇣
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(�)
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(�)

i
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� d
(�)

i

⇣

⇣
(�)

i
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(�)

i�1

⌘

+ ⇣
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i

+ �
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i

. (3.15)
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Now introducing the di↵erence variable ⌘(�)
i

= ⇣
(�)

i

� ⇣
(�)

i�1

and noting that
P

i

j=1

⌘
(�)

j

=
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(�)
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, we arrive at
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The set
�

✓
(�)

i

 

can then be found using ✓
i

=
P

i

j=1

⌘
j

· M�1. Results for the mean

conditional fixation time can then be obtained using t
(�)

i|A = ✓
(�)

i

/�
(�)

i

.

Switching between two environments

We now focus on the case of environments which can be in one of two possible states,

i.e. ⌦ = 2. We label the two states as � = ±1 (⇤ = {+1,�1}). The matrix M can

then be written as

M =

0

@

1 � p
+

p�

p
+

1 � p�

1

A , (3.17)

where the quantity p
�

is the probability that in a given time-step the environment

switches from state � to ��, i.e. if the environment is in state +1, it will switch to

state �1 in the next time-step with probability p
+

.

We recall that our theoretical results require the inversion of M. Excluding the

case when � = det(M) = 1 � p
+

� p� vanishes, this inversion can be carried out

straightforwardly,

M�1 =
1

�

0

@

1 � p� �p�

�p
+

1 � p
+

1

A . (3.18)

For the case � = 0, i.e. p
+

+ p� = 1, we have verified that there is no anomalous

behaviour of simulation results, see below (Fig. 3.6).

To find the fixation probability in this two-environment system, we substitute the

inverse matrix (3.18) into the general result (3.8). This reduces to the recursion

�
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= �
(�)

i
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(��)
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⌘

, (3.19)

along with the boundary condition
P

N

j=1

�
j

= (1, 1). The fixation probability is
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obtained via
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Similarly, Eq. (3.12) for the mean unconditional fixation time reduces to
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along with the boundary condition
P

N

i=1

⌫
j

= (0, 0). The mean unconditional fixation

times are then found as
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Finally, Eq. (3.16) for the mean conditional fixation time reduces to
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along with the boundary condition
P

N

i=1

⌘
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= (0, 0). The mean conditional fixation

times are then found as
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(�)

i|A =
1

�
(�)

i

"

i

X

j=1

⌘
j

· M�1

#

(�)

=
1

�
(�)

i

1

�

i

X

j=1

h

(1 � p��

)⌘(�)
j

� p
�

⌘
(��)

j

i

. (3.24)

E↵ective description for fast switching

We say the environment is in the ‘fast switching’ regime if the lifetime of the environ-

mental states are much shorter than the mean fixation time in either environment, i.e.

in the fast switching regime we expect the state of the environment to change many

times before fixation is reached. If this is the case we expect the population dynamics

to be controlled by a set of e↵ective transition probabilities, which are weighted aver-

ages of the original transition probabilities in the di↵erent environmental states. The

weights are given by the fraction of time spent in each environmental state.

In the two-environment scenario, the dynamics of � follow a so-called telegraph

process [12]. Writing P
�

(t) for the probability for the environment to be found in
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state � at time t, the evolution of � is described by the forward master equation

P
�

(t + 1) =
P

�

0 µ
�,�

0P
�

0(t). In matrix form this is simply P(t + 1) = M · P(t). By

diagonalising the 2 ⇥ 2 matrix M [Eq. (3.17)], we can express P(t) in terms of the

eigenvectors (v
1

and v
2

) and eigenvalues (�
1

= 1 and �
2

= 1 � p
+

� p�) of M, which

gives

P(t) = c
1

v
1

+ c
2

v
2

�t
2

, (3.25)

where c
1

and c
2

are determined by the initial condition. Taking the long-time limit of

this expression reveals the fraction of time spent in the state � is p��

/(p
�

+ p��

) for

� 2 {�1,+1}. Hence the time spent in state � decreases with increasing p
�

if p��

is

held fixed. Using this long-time limit, the e↵ective transition probabilities are given

by

be↵
i

=
p�

p
+

+ p�
b
(+)

i

+
p
+

p
+

+ p�
b
(�)

i

, (3.26)

and likewise for de↵
i

.

In this approximation the dynamics of the population are mapped onto the familiar

birth–death process on the set i 2 {0, 1, . . . , N} with absorbing states i = 0 and

i = N , as described in Sec. 2.3. Using the expressions from Sec. 2.4 for the fixation

probabilities and mean fixation times, we can describe the fixation properties of the

population in the fast-switching regime. For the fixation probability of a single mutant,

we have

�e↵

1

=
1

1 +
P

N�1

k=1

Q

k

j=1

�e↵
j

. (3.27)

We have here written �e↵
i

= de↵
i

/be↵
i

. The corresponding approximations for the mean

unconditional and conditional fixation times of a single mutant are

te↵
1

= �e↵

1

N�1

X

k=1

k

X

`=1

1

be↵
`

k

Y

m=`+1

�e↵
m

, (3.28)

te↵
1|A =

N�1

X

k=1

k

X

`=1

1

be↵
`

�e↵

`

k

Y

m=`+1

�e↵
m

, (3.29)

respectively. These expressions describe exactly the fixation properties of a birth–death

system with the e↵ective transition probabilities; the nature of our approximation is to
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assume that the birth–death process in quickly changing environments can be described

by the e↵ective transition probabilities in Eq. (3.26).

Finally we note that this theory is independent of the invertibility of the switching

matrix M (also shown in Fig. 3.6).

3.4 Switching between two games

As a direct application of the general theory we have developed, we now consider evo-

lutionary game dynamics in well-mixed, finite populations. We modify the dynamics

described in Sec. 2.8 so that at any point in time the environment is in one of two

discrete states (� 2 {+1,�1}). In this model the state of the environment a↵ects the

payo↵ structure. The interaction between individuals is characterised by the payo↵

matrix

A B

A R(�) S(�)

B T (�) P (�).

(3.30)

If the environment is in state �, and if there are i individuals of typeA in the population

and N � i individuals of type B, the expected payo↵s for each type of player are

⇡
(�)

A

(i) =
i � 1

N � 1
R(�) +

N � i

N � 1
S(�), (3.31a)

⇡
(�)

B

(i) =
i

N � 1
T (�) +

N � i � 1

N � 1
P (�), (3.31b)

as described in Eq. (2.74). For this example we choose an exponential mapping between

expected payo↵ and fitness as described in Eq. (2.78). In environment � the fitnesses

are

f
(�)

A

(i) = exp
h

�⇡
(�)

A

(i)
i

, (3.32a)

f
(�)

B

(i) = exp
h

�⇡
(�)

B

(i)
i

, (3.32b)

where � > 0 is the so-called intensity of selection. Following the update rules of the

Moran process as described in Eq. (2.79), the intensive transition probabilities are
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given by

b
(�)

i

=
i(N � i)

N2

f
(�)

A

(i)

f
(�)

(i)
(3.33a)

d
(�)

i

=
i(N � i)

N2

f
(�)

B

(i)

f
(�)

(i)
, (3.33b)

where f
(�)

(i) = [if (�)

A

(i) + (N � i)f (�)

B

(i)]/N is the average fitness of the population.

To reduce the parameter space of our model, we consider R(�) = P (�) = 1 in the

payo↵ matrix (3.30). The type of game is then determined by the o↵-diagonal terms.

We choose S(�) = 1+�q and T (�) = 1+�r, where q and r are real-valued parameters.

Thus we have the parametrised payo↵ matrix

A B

A 1 1 + �q

B 1 + �r 1.

(3.34)

This parametrisation does not span the entire space of all 2 ⇥ 2 games, but it covers

the three general types discussed in Sec. 2.8:

Dominance: 1 + �q > 1 and 1 + �r < 1 (or 1 + �q < 1 and 1 + �r > 1), type A (or

type B) always has the higher fitness irrespective of the composition of the population.

This type is then always favoured by selection.

Coexistence: 1 + �q > 1 and 1 + �r > 1, selection drives the population away from

the absorbing boundaries.

Coordination: 1 + �q < 1 and 1 + �r < 1, the population exhibits bi-stability and

selection drives the population towards the monomorphic states.

In the last two cases there exists an internal point in frequency space for which the

direction of selection changes its sign, i.e. at which the gradient of selection, b(�)
i

�
d
(�)

i

, is zero. This is referred to as the selection-balance point. This point can be

calculated by solving b
(�)

i

⇤ = d
(�)

i

⇤ for i⇤. From the transition probabilities and fitnesses

in Eqs. (3.32) and (3.33), we see i⇤ satisfies ⇡(�)

A

(i⇤) = ⇡
(�)

B

(i⇤). From Eq. (3.31) we find

i⇤/N = q/(q + r) for both � = ±1. In the dominance game there are no such turning
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Figure 3.3. (a) A sample trajectory (time series) of the fraction of individuals of type A.
White background corresponds to the environment being in the � = +1 coexistence state,
while the shaded background corresponds to the � = �1 coordination state. Dashed line is
the location of the point at which selection balances, which is the same in both states of the

environment. (b) Gradient of selection in the � = +1 coexistence state, b

(+)

i

� d

(+)

i

. Solid
circle shows location of the point of selection balance, and arrows indicate the direction and
magnitude of flow towards this point. (c) Gradient of selection in the � = �1 coordination

state, b

(�)

i

� d

(�)

i

. Empty circle shows location of the point of selection balance, and arrows
indicate the direction and magnitude of flow away from this point. For the realisation in
panel (a) and the selection bias shown in (b) and (c), the payo↵ matrix parameters are
q = 0.5 and r = 0.9, the selection intensity is � = 1, the system size is N = 100, and the
switching probabilities are p

+

= 10�3 and p� = 10�4. Time is measured in generations.

points. For the remainder of this Chapter we focus on switching between coexistence

and coordination games. More precisely we choose q > 0 and r > 0 in Eq. (3.34). The

coexistence game corresponds to � = +1 and the coordination game to � = �1.

Results

In Fig. 3.3(a) we show a sample trajectory of a simulation in which a single mutant

reaches fixation. The gradient of selection, b(�)
i

� d
(�)

i

, for the two fixed environments

is shown in Figs. 3.3(b) and 3.3(c). During periods when the environment is in the

coexistence state (light background; � = +1) the population fluctuates about the

selection-balance point (dashed line). During periods when the environment is in the

coordination state (shaded background; � = �1) the population is driven away from

the selection-balance point. In the final period in the coordination state the mutant

is driven to fixation.

In Fig. 3.4 we show the variation of fixation probability and mean conditional fix-

ation time with the switching parameters p
+

and p� obtained from our theoretical
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Figure 3.4. Theoretical predictions of the fixation probability and mean conditional fixation
time of a single mutant as a function of the switching parameters p

+

and p�. Panel (a) shows
the fixation probability [Eq. (3.20)] when starting from the � = +1 coexistence game, and
panel (b) shows the same when starting from the � = �1 coordination game. Panel (c) shows
the mean conditional fixation time [Eq. (3.24)] (time measured in generations) when starting
from the � = +1 coexistence game, and panel (d) shows the same when starting from the
� = �1 coordination game. Horizontal lines correspond to the data shown in Fig. 3.5. The
payo↵ matrix parameters are q = 0.5 and r = 0.9, the selection intensity is � = 0.5, and the
system size is N = 50.

framework. The fixation probability in this example depends non-trivially on the en-

vironmental switching parameters; we find a combination, p
+

' p�, for which fixation

of a single mutant is most likely, as shown in Figs. 3.4(a) and (b). The initial state of

the environment has very little e↵ect on the fixation probability for p± & 0.1. In this

region the switching process of the environment is too fast for the initial condition to

have any significant e↵ect on the population dynamics, and it is here that we expect

the e↵ective description to approximate the system well. For p± . 0.1 the fixation

probability is a↵ected by the initial condition. This e↵ect can be understood by consid-

ering the deterministic gradient of selection of the two games, which are qualitatively

the same as those shown in Figs. 3.3(b) and (c).2 When starting in the coordination

2Payo↵ parameters are the same in Fig. 3.3 and Fig. 3.4. Although system-size and selection
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game, selection pushes the mutant towards extinction. Hence fixation is more likely if

the initial state is the coexistence game.

The mean conditional fixation times shown in Figs. 3.4(c) and (d) show very little

dependence on the initial state of the environment. Systems started in the coordination

environment will tend to reach extinction relatively quickly due to initial adverse

selection, unless the environment switches to the coexistence state early on. Thus the

sample of runs that reach fixation started in the coordination game will be dominated

by runs in which the environment switches soon after the start of the run. Then we

expect that the value of the mean conditional fixation time is close to the one obtained

when starting in the coexistence game.

The fixation time is small for p
+

� p� when the environment is found mostly in

the coordination game, and large when the environment is mostly in the coexistence

state (p
+

⌧ p�). If fixation happens, it will generally be quicker in the coordination

game than in the coexistence game [63, 87]. This is due to the adverse selection bias

in the coordination game at low mutant numbers, as shown in Fig. 3.3(c). The more

time the system spends in this region of adverse selection the less likely it is for the

mutant to reach fixation. Thus if fixation happens in a coordination game then it

happens fast. In the coexistence game on the other hand the direction of selection

is towards the balance point, as shown in Fig. 3.3(b). The system can ‘a↵ord’ to

spend significant time in the region of small mutant numbers and still reach fixation

eventually even after repeated excursions through frequency space. Thus there is no

need for fixation to occur quickly, and conditional fixation times can be long. These

observations make it plausible that the mean conditional fixation time will generally

decrease when less time is spent in the coexistence game, which is exactly what we

find in Figs. 3.4(c) and (d). Other choices of the parameters q and r for which the two

games are a coexistence game and a coordination game, reveal that the behaviour of

the mean conditional fixation times is robust under such changes.

To compare how the analytic predictions compare with simulation results we take

intensity are di↵erent, these parameters do not a↵ect the qualitative features of the gradient of
selection.
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Figure 3.5. (a) Fixation probability of a single mutant at fixed p� computed from simula-
tion results (symbols; crosses correspond to �(0) = +1 and circles to �(0) = �1), along with
the theoretical results (solid lines) from Eq. (3.20), and the fast-switching approximation
result (dashed line) of Eq. (3.27). (b) Mean conditional fixation time (in generations) of a
single mutant at fixed p� computed from simulation results as described above, along with
the exact theoretical results (solid lines) of Eq. (3.24), and the fast-switching approximation
result (dashed line) of Eq. (3.29). The parameters are as in Fig. 3.4, and p� = 0.01.

a cross-section of the data, shown by the horizontal lines in Figs. 3.4(a)–(d). This data

is shown in Fig. 3.5. The theoretical predictions of Eqs. (3.20) and (3.24), indicated by

solid lines, are in convincing agreement with simulation data (symbols). The predic-

tions of the e↵ective theory, Eqs. (3.27) and (3.29), agree well with simulation results

in the fast-switching region. The e↵ective theory qualitatively matches the data, but

unsurprisingly there are systematic deviations when switching is slow.

In Fig. 3.6, to show that there is no anomalous behaviour when the switching matrix

M is singular, we keep p� = 0.5 fixed and sweep p
+

across 0.5, which is the point at

which � = 0. The simulation data does not indicate any singularity or anomalous

behaviour, and this is also confirmed by the e↵ective theory which does not require M

to be invertible. The apparent issue is hence not a fundamental problem, but merely

an artificial singularity that arises from the procedure that we use to analyse this

system.

The features observed in Fig. 3.5, i.e. the peak in the fixation probability and shape

of the mean conditional fixation time as a function of p
+

, are found to be robust when

the system size is increased, as shown in Fig. 3.7. Fixation probabilities generally

decrease with system size, but the observed peak becomes sharper. This e↵ect is
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Figure 3.7. (a) Fixation probability of a single mutant at fixed p� started in the �(0) = +1
coexistence game for various system sizes. Simulation results (symbols) are shown along with
the theoretical results (solid lines) from Eq. (3.20). (b) Mean conditional fixation time (in
generations) of a single mutant. The main panel shows simulation results, as described
above along with the exact theoretical results (solid lines) Eq. (3.24). Inset panel shows the
theoretical results scaled by the system size. Open symbols are averages over 104 simulation
runs, filled symbols correspond to averaging over 106 runs. The parameters are as in Fig. 3.4,
and p� = 0.01.
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= 1 in Eq. (2.24). Remaining parameters are � = 0.5 and
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highlighted by the logarithmic axis in Fig. 3.7(a).

The mean conditional fixation time scales exponentially in N when the system

spends most of its time in the coexistence state. This scaling is in-line with existing

results [63, 105]. If the majority of time is spent in the coordination game, then the

mean conditional fixation time increases sub-linearly with N , again in agreement with

existing literature [63]. As can be seen in the inset of Fig. 3.7(b), there is a ‘critical’

switching rate p
+

' p� = 0.01 at which the scaling of the fixation time (in generations)

is linear in N . This is in agreement with the neutral theory result [63].

Finally we comment on how varying the payo↵ matrix parameters a↵ects the evo-

lutionary outcome. By considering the deterministic gradient of selection, we have

shown that the selection-balance point is located at i⇤/N = q/(q + r) in both the co-

existence and coordination games. If the environment is fixed to the coexistence-game

state, fixation of the mutant is more likely if the selection-balance point is close to the

fixated state as there is a greater region in which selection favours the mutant. This is

shown in Fig. 3.8(a). In a fixed coordination-game environment the reverse is the case.

The range of adverse selection is to the left of the balance point, and so fixation is less

likely the closer the point of selection balance is to the fixated state, again shown in

Fig. 3.8(a). These views are validated through computation of the fixation probability
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in the fixed games using Eq. (2.24) as a function of the fixed point location, shown in

Fig. 3.8(b).

Using these ideas we can infer how the system with a switching environment will

behave. For q ⌧ r, i.e. a selection-balance point close to i = 0, we expect that

the fixation probability will increase the more time is spent in the coordination-game

environment, i.e. �(�)

1

is an increasing function of the probability p
+

with which the

system leaves the � = +1 state (coexistence game). For q � r, i.e. i⇤ close to i = N ,

the reverse is the case. Fixation is more likely in the coexistence game (� = +1), and

the fixation probability is hence a decreasing function of p
+

at fixed p�.

For q ⇡ r the situation is less clear. The fixation probability will be comparable

in both games if the environment is frozen, as shown in Fig. 3.8(b). Two e↵ects here

conspire to produce a non-trivial outcome:

(i) Consider the case in which the system is mostly in the coordination-game state,

i.e. p
+

� p�. It is plausible that an occasional switch to a coexistence game will

make fixation more likely than in a constant coordination game. This is because

the coexistence-game environment pushes the system away from extinction at

low mutant numbers. In the regime of p
+

� p� we thus expect the fixation

probability to increase as p
+

is lowered. In other words, �(�)

1

is a decreasing

function at large p
+

.

(ii) Similarly, if the system is mostly in the coexistence-game environment (p
+

⌧
p�), short periods of time in the coordination game can make fixation more likely.

This is because selection at large mutant numbers is directed towards fixation in

the coordination game. At p
+

⌧ p� we expect �(�)

1

to be an increasing function

of p
+

.

These two e↵ects taken together generate a maximum of the fixation probability at

intermediate values of p
+

⇡ p�, which is exactly what we find in Fig. 3.4.

To confirm our picture we find the value of p
+

that maximises fixation probability

as a function of q and r in Fig. 3.9 (for a given p� = 0.01, ). The point of selection

balance is 1/(1 + r/q). The presence of diagonal structures in Fig. 3.9 shows that the
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Figure 3.9. The value of p

+

at which �
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1

is maximal given p� = 0.01 as a function of
q and r. Fixation probabilities found using Eq. (3.20). Diagonal structures indicate only
the ratio between r and q, i.e. the location of the selection-balance point, determines the
qualitative behaviour. Remaining parameters are � = 0.5 and N = 50.

behaviour of the fixation probability is determined by the location of the selection-

balance point. If this point is close to the fixation state i = N (q � r, bottom-right

in Fig. 3.9), then the fixation probability is maximal for vanishing p
+

. If this point is

close to the extinction state (q ⌧ r, top-left in Fig. 3.9), then the fixation probability is

maximal for large p
+

. For intermediate locations of the selection-balance point (q ⇡ r)

fixation is maximised at a non-trivial combination of environment states. Starting the

environment in the � = �1 coordination game produces an almost identical picture

to Fig. 3.9.

3.5 Mutation–selection equilibria

We now consider systems with mutations occurring during the dynamics. This removes

the possibility of fixation and extinction. The combination of mutation, selection, and

noise can lead to non-trivial stationary states. We introduce mutation by modifying

the discrete-time transition probabilities of Eq. (3.33) and now use

b
(�)

i

= (1 � u)
i(N � i)

N2

f
(�)

A

(i)

f
(�)

(i)
+ u

(N � i)2

N2

, (3.35a)

d
(�)

i

= (1 � u)
i(N � i)

N2

f
(�)

B

(i)

f
(�)

(i)
+ u

i2

N2

, (3.35b)
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where u ⌧ 1 is the mutation rate. The transition probabilities b(�)
0

= d
(�)

N

= u are now

non-zero, and so the states i = 0 and i = N are no longer absorbing.

The stationary probability ⇢
(i,�)

of finding the system in state (i, �) (i = 0, 1, . . . , N ;

� 2 ⇤) is obtained, as described in Sec. 2.5, by taking the infinite-time limit of the

forward master equation (3.3). This gives

⇢
(i,�)

=
X

�

02⇤

µ
�,�

0

h

b
(�

0
)

i�1

⇢
(i�1,�

0
)

+ d
(�

0
)

i+1

⇢
(i+1,�

0
)

+
⇣

1 � b
(�

0
)

i

� d
(�

0
)

i

⌘

⇢
(i,�

0
)

i

. (3.36)

This equation is of the form ⇢
(i,�)

=
P

�

0
P

j

R
(i,�),(j,�

0
)

⇢
(j,�

0
)

, and it is solved by find-

ing the eigenvector of the linear operator R corresponding to the eigenvalue � = 1.

The stationary distribution for the state of the population is found by summing over

all states of the environment, ⇢
i

=
P

�

⇢
(i,�)

. This solution is the exact stationary

distribution of the population.

If the switching probabilities are large, we are in the fast-switching limit described

by Eq. (3.26). In this regime one might expect the stationary distribution of the pop-

ulation to be approximated by the distribution of a system controlled by the e↵ective

transition rates, be↵
i

and de↵
i

. The resulting e↵ective stationary distribution of the

population, ⇢e↵
i

, is given by Eq. (2.54), i.e.

⇢e↵
i

=
�e↵

i

P

N

j=0

�e↵

j

, �e↵

i

=
i

Y

j=1

be↵
j�1

de↵
j

. (3.37)

If the switching probabilities are small, then the environment states are long-lived.

In this regime the population will relax to the stationary state of the current environ-

ment before the next switching event. With this, one might expect that the stationary

distribution of the population is given by the weighted average of the stationary dis-

tributions one would obtain in the respective single environments. The stationary

distribution in a single fixed environment, ⇢(�)
i

, can again be read o↵ from Eq. (2.54)

as

⇢
(�)

i

=
�(�)

i

P

N

j=0

�(�)

j

, �(�)

i

=
i

Y

j=1

b
(�)

j�1

d
(�)

j

. (3.38)

This can also be derived from Eq. (3.36) by assuming that the transition matrix of the

environment, M, is the identity matrix. In fact lim
p�!0

M = I. The average stationary
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distribution over many slow-switching environments can then be written as

⇢
i

=
X

�

02⇤

⇢
�

0⇢
(�

0
)

i

, (3.39)

where ⇢
�

is the (stationary) probability that the environment is in state �.

Results

For the environmental dynamics we will again consider the two-state scenario discussed

in Sec. 3.4, where the environment switches between a coexistence game and a coor-

dination game. Fig. 3.10(a) shows the stationary distributions of the population for

the fixed environments [calculated using Eq. (3.38)], and the approximate stationary

distributions ⇢e↵
i

and ⇢
i

for identical switching parameters. In a constant coexistence

game (� = +1) the stationary distribution is peaked about the point at which the

gradient of selection changes sign, and in a fixed coordination game (� = �1) we

find a distribution which is strongly peaked about the i ' N state. The asymmetry

is due to the imbalanced payo↵ matrix used, such that the basin of attraction for

the i ' N state is much larger than for the i ' 0 state. For the parameters chosen

in the Fig. 3.10, the selection-balance point is at i⇤ ⇡ 18. For equal switching rates,

p
+

= p�, the averaged stationary distribution ⇢
i

lies exactly in between the two single-

environment distributions. The e↵ective distribution ⇢e↵
i

is approximately uniform in

the centre of the domain, with a lower probability of being found close to the domain

boundaries. This reflects the fact that for equal switching probabilities the e↵ective

game is close to neutral, but frequent mutations push the population to the interior.

The exact solution [Eq. (3.36)] is plotted in Fig. 3.10(b) for a range of magnitudes of

p
+

= p�. For large p� we are in the fast-switching regime, and hence the exact solution

closely matches the e↵ective solution ⇢e↵
i

. For small p
�

we are in the slow-switching

regime and the exact solution approaches the averaged solution ⇢
i

. For p
�

. 10�2,

the exact solution matches the features of the single-environment distributions, with a

peak at i ' N and at the coexistence point i⇤. Interestingly, this solution also predicts

a (small) peak at the i ' 0 state, a feature which is not seen in the single-environment

distributions, or in the approximate distributions.
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Figure 3.10. (a) The stationary distributions in the single-environment coexistence game

⇢

(1)

i,+

(dotted line) and coordination game ⇢

(1)

i,� (dashed lines) calculated from Eq. (3.38),
along with the ‘average’ ⇢

i

[Eq. (3.39)] and e↵ective ⇢

i,e↵

[Eq. (3.37)] approximate stationary
solutions (solid lines) for p

+

= p�. (b) The exact solution ⇢

i

[Eq. (3.36); solid lines and
symbols for identification] at di↵erent combinations of magnitudes of p

+

= p�. The payo↵
matrix parameters are q = 0.5 and r = 0.9, the system size is N = 50, the selection intensity
is � = 0.5, and the mutation probability is u = 0.02.

The distributions ⇢e↵
i

and ⇢
i

are both approximations. To evaluate the accuracy of

these distributions we compute the distance from the exact eigenvector solution given

in Eq. (3.36). For the distances we will use the measure

de↵ =
1

2

N

X

i=0

�

�⇢e↵
i

� ⇢
i

�

� , (3.40a)

d =
1

2

N

X

i=0

|⇢
i

� ⇢
i

| , (3.40b)

which was introduced in Sec. 2.5. These distances are plotted in Fig. 3.11 as a function

of switching parameters p
+

and p�. The approach based on e↵ective transition rates

[Fig. 3.11(a)] is found to be accurate over a large range of switching probabilities away

from the slow-switching p
�

! 0 limit. Conversely, the weighted-average distribution

[Fig. 3.11(b)] is inaccurate for a large range of p
�

, but it becomes increasingly accurate

if the dynamics of the environment is slow (p
�

! 0). Both approximate distributions

accurately predict the exact stationary distribution when the two switching rates are

very disparate, i.e. p
+

⌧ p� or vice versa (top-left and bottom-right corners of the

two insets). In these regions the environment spends most of the time in one state, so

that the model e↵ectively reduces to the single-environment case. All approaches then

collapse to the same result, which is the stationary distribution obtained in a single
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Figure 3.11. (a) The distance [Eq. (3.40a)] between the e↵ective distribution [Eq. (3.37)]
and the exact stationary distributions [Eq. (3.36)]. (b) The distance [Eq. (3.40b)] between
the averaged stationary distribution [Eq. (3.39)] and the exact stationary distribution. The
remaining parameters are as in Fig. 3.10.

fixed environment.

To verify the accuracy of the analysis, we compare the stationary distribution

and its approximations against some numerical data. This data can be obtained in

numerous ways. Firstly the master equation (3.3) could be numerically integrated

for a long time. Instead, we will compare with the stationary distribution obtained

from an ensemble of simulations of the exact stochastic process described by reaction

rates (3.35). This distribution is obtained by sampling stochastic simulations at mul-

tiple time points to create a set of distributions for the variable i, and then averaging

over the set of distributions to obtain a closer approximation, Q
i

, to the stationary

distribution. These distributions are then compared with our analytical distributions

using the distance measure

d[⇢, Q] =
1

2

N

X

i=0

|⇢
i

� Q
i

| , (3.41)

where ⇢ can be the exact, e↵ective or averaged distribution. These distances are shown

in Fig. 3.12. The accuracy of the exact solution is confirmed by simulations across

many orders of magnitude of switching probabilities. Any deviations can be attributed

to incomplete equilibration. For large switching probabilities the e↵ective stationary

distribution, ⇢e↵ , approximates the simulation results well. As expected the e↵ective
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Figure 3.12. The distance [Eq. (3.41)] between the analytic distributions (3.36), (3.37),
and (3.39) with the stationary distributions obtained from simulation, Q. The remaining
parameters are as in Fig. 3.10.

theory becomes inaccurate for slow switching, roughly below p
�

' 10�2, in our exam-

ple. The averaged stationary distribution, ⇢, shows the opposite behaviour. It is in

reasonable agreement with simulations for slow switching, but shows systematic devi-

ations when the switching process is too fast for the population to react adiabatically.

An alternative approach to obtain the distance from simulation distributions would

be to use the time-averaged distance. That is the distance between the sampled

simulation distribution and the analytic distributions is taken at each time point,

and then the set of distances is averaged over time. This approach was used in the

publication associated with this Chapter, Ref. [44], and it produces an almost identical

picture to Fig. 3.12.

3.6 Summary

The dynamics of a population evolving under changing environmental conditions is

an important concept in the study of bacterial populations. Some previous works

have focused on deterministic analyses [98], or an environment following a continu-

ous stochastic process [104]. Here we have taken a di↵erent route, and assumed that

the environment switches between discrete states whilst retaining the demographic

stochasticity of the population. We have developed the mathematical formalism to
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describe fixation properties in a general birth–death process in an environment fluc-

tuating between an arbitrary number of discrete states. The main results of this

investigation are self-consistent expressions for the fixation probability of a mutant in

a fixed-size population, as well as for the mean unconditional and conditional fixa-

tion times. For short-lived environments we put forward an approximation based on

e↵ective transition probabilities.

As a specific application we discuss the fixation properties in the context of an

evolutionary game in a two-world scenario. The two states of the environment then

correspond to two di↵erent payo↵ matrices of the underlying games. Simulations

confirm our analytic solutions over a wide range of switching probabilities. The ap-

proximation based on e↵ective transition probabilities is seen to reproduce simulation

data in the limit of fast switching.

Focussing on the case of switching between a coexistence game and a coordination

game, we find unexpected non-trivial behaviour of the fixation probability of a single

mutant. We observe in our analytical results and in simulations that fixation can be

more likely in a scenario in which the environment switches between the two games

than in either of the constant environments. We provide an intuitive explanation

for this e↵ect, and we have investigated in detail the circumstances under which this

phenomenon can occur.

Adding mutations to the dynamics removes the possibility of fixation, but intro-

duces non-trivial stationary states. We develop a method for calculating this distri-

bution, along with approximations for both long-lived and short-lived environmental

states. These approximations are shown to agree well with simulations in their respec-

tive limits.

The general theory developed here now allows further investigation of evolutionary

dynamics in time-varying environments. It provides a first mathematical characteri-

sation of the e↵ects one may expect in such systems. The closed-form self-consistent

solutions will help to speed up future studies, and they may remove the need for

extensive computer simulations.
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While our work is mainly mathematical, we think that our theory can be used to

interpret existing experimental studies such as those studied by Acar et al. [99]. For

some biological systems it may be more appropriate to use constant selection in each

environment, as opposed to frequency-dependent selection. Our example of switching

between coexistence and coordination games was chosen to illustrate the theory and

to show the rich dynamical behaviour that can observed in these models. We note

that both types of game have been observed in systems of experimental evolution

[40–42]. We hope the formalism we have developed will be useful to analyse models

closer to other biological applications, and potentially to guide future experiments on

evolutionary systems in time-dependent environments.



82



Chapter 4

Fixation time distributions in birth–

death processes

4.1 Introduction

As discussed in the previous Chapter, the time that it takes for a mutation to reach

fixation in a population is one of the fundamental quantities that is predicted by evolu-

tionary dynamics. However, the fixation time is itself a random variable, and while the

first moment can provide a good indication of the outcome in some circumstances, this

approach can be insu�cient when the distribution of fixation times is broad [69,106].

To provide a complete answer to the question ‘how long does it take for a mutation to

fixate in a population?’, we must compute the complete arrival time distribution. In

this Chapter we will focus on the original birth–death process described in Sec. 2.3.

This work has been described in the pre-print [45].

Although the master equation (2.14) describing the birth–death dynamics is linear,

calculating fixation time distributions is more intricate than one may initially think.

As described in Sec. 2.4, nested expressions for all moments of fixation times are known

[62, 64, 69]. These are given by Eqs. (2.45) and (2.46). From these the distributions

can, in principle, be constructed recursively up to arbitrary precision. However, this

approach does not provide a simple closed-form solution or a means of e�ciently

83
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sampling from the arrival time distribution.

An alternative approach is to diagonalise the linear operator of the master equation

and to carry out the analysis in eigenspace. This method was used by Karlin and

McGregor1 to calculate the arrival time distribution at a state N > 0 of a birth–death

process that has a reflecting boundary at state 0 [107]. Provided that the process

is initialised in state 0, Karlin and McGregor showed that the distribution of arrival

times can be expressed as the convolution of exponential distributions parametrised by

each of the non-zero eigenvalues of the master equation [107, 108]. This is equivalent

to stating that the arrival times are given by the sum of independent, exponentially

distributed random variables. We will refer to this result as the Karlin–McGregor

theorem. It has been examined in numerous sources in the probability theory literature

[108–116]. However, the discussion of these matters is usually very terse, and not

easily accessible to physicists or researchers in adjacent disciplines. Researchers in the

theoretical biosciences are only recently beginning to use these ideas for the purpose of

model reduction [117,118]. The existing results are limited to specific initial conditions

and types of birth–death chains, and a clear understanding of the analysis in eigenspace

is lacking.

In this Chapter we consider birth–death processes with two absorbing states and a

general initial condition, describing the invasion (or extinction) of a number of mutants

in a population of wild-type individuals. The model is described in detail in Sec. 4.2.

In Sec. 4.3 we calculate closed-form expressions for the fixation time distributions

in terms of the eigenvalues of the master equation, before we turn to the physical

interpretation of these and the relation to the Karlin–McGregor results in Sec. 4.4. We

illustrate these results by applying this framework to evolutionary games in Sec. 4.5.

Here we demonstrate the inadequacy of the mean whilst highlighting the accuracy of

our method. We then use our results to relate fixation processes to the equilibration

dynamics of evolutionary systems with mutation (and hence with no absorbing states)

in Sec. 4.6. In these latter systems the timescale is defined by the mixing time, as

described in Sec. 2.5. In the limit of small mutation rates, we identify the relation

1Samuel Karlin (1924–2007) and James McGregor (1921–1988).
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Figure 4.1. One-step birth–death process in a population of N individuals. The variable i

denotes the number of invading mutants. The states i = 0 (extinction) and i = N (fixation)
are absorbing. Birth rates are labelled b

i

and death rates d

i
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between the timescales of equilibration and fixation. Finally, we explore the e�ciency

of our method in Sec. 4.7. We demonstrate that our method is a very e↵ective model-

reduction tool, which can generate samples from the arrival time distributions much

faster than direct simulation of the original birth–death process. We also show that

our calculation of the arrival time distribution in terms of the spectrum of the process

is faster than straightforward numerical integration of the master equation.

4.2 Model

We study a continuous-time birth–death process with states 0  i  N , representing

a population of constant size N with i individuals of the mutant type and N � i of the

resident wild-type. As described in Sec. 2.3, this process is characterised by the birth

and death rates b
i

and d
i

(0  i  N). Throughout the next section we will not specify

a form for these birth and death rates, but in general they are non-linear functions

of i. At the boundaries the birth and death rates satisfy b
N

= d
0

= 0. Initially we

will consider the boundaries to be absorbing such that we also have b
0

= d
N

= 0, as

illustrated in Fig. 4.1.

This process is described by the master equation for the probability, P
i

(t), to be

found in state i at time t, given that the system was started in state i
0

at time t = 0.

As in Sec. 2.3, we initially suppress the notation for the initial condition to maintain

readability. We write the master equation in the matrix form

Ṗ(t) = W · P(t), (4.1)
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where P = (P
0

, P
1

, . . . , P
N

)T, and the (N + 1) ⇥ (N + 1) matrix W has elements

w
i,i

= �(b
i

+ d
i

), w
i+1,i

= b
i

and w
i�1,i

= d
i

. Our objective in the next section is

to calculate exactly the arrival time densities at the absorbing states, i.e. Ṗ
0

(t) and

Ṗ
N

(t).

4.3 Mathematical framework

To derive the arrival time densities it is convenient to focus only on the interior states,

1  i  N � 1, of the birth–death process shown in Fig. 4.1. We introduce the lower-

case notation p = (p
1

, . . . , p
N�1

)T for the interior, where p
i

(t) = P
i

(t) for 1  i 
N � 1. We cannot call this quantity a probability distribution as, in general, it is not

normalised; there is a constant ‘leaking’ from the interior to the absorbing states. The

quantity p satisfies the equation

ṗ(t) = A · p(t) (4.2)

where the matrix A is equal to the matrix W in Eq. (4.1) with the first and last

rows and columns removed. We represent this removal by shading the elements to be

removed, such that the matrix A is given by

A =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 d
1

0

0 �(b
1

+ d
1

) d
2

0

0 b
1

�(b
2

+ d
2

) d
3

0

. . . . . . . . . . . . . . .

0 b
N�3

�(b
N�2

+ d
N�2

) d
N�1

0

0 b
N�2

�(b
N�1

+ d
N�1

) 0

0 b
N�1

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

(4.3)

Ignoring the shading, this is the matrix W. We can represent the (N +1)⇥ (N +1)
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matrix W in terms of (N � 1) ⇥ (N � 1) matrix A in the following way:

W =

0

B

B

B

B

@

0 d
1

0 · · · 0
...

h

A
i ...

0 · · · 0 b
N�1

0

1

C

C

C

C

A

. (4.4)

With this representation it is easy to show the important result that the eigenvalues

of A coincide with the eigenvalues of W. Considering det(W � �I) = 0 gives

0 =

�

�

�

�

�

�

�

�

�

�

�� d
1

0 · · · 0
...

h

A � �I
i ...

0 · · · 0 b
N�1

��

�

�

�

�

�

�

�

�

�

�

= �2 det(A � �I). (4.5)

Thus the eigenvalues of W are � = 0 (with multiplicity 2) and the eigenvalues of A.

We can discern some properties about the eigenvalues of A. As the probability leaks

from the interior states to the absorbing states, the truncated master equation (4.2)

does not conserve probability and the elements of p(t) must approach zero at t ! 1.

Hence, all eigenvalues of the operator A in Eq. (4.2) must have a (strictly) negative

real part. Furthermore, as the sub- and super-diagonal elements of A are all positive,

the matrix is sign-symmetric and can be shown to be similar to a symmetric matrix.

Hence all the eigenvalues of A are real. With this we can say that the eigenvalues of A

are (strictly) negative. To avoid numerous minus signs and having to specify absolute

values, we will work with the eigenvalues of �A, which are positive. We label these as

�
i

for 1  i  N � 1. At this stage we do not specify an ordering of the eigenvalues.

The formal solution to Eq. (4.2) is

p(t) = exp(At) · p(0), (4.6)

where the initial condition is p
i

(0) = �
i,i0 (1  i

0

 N � 1). To proceed analytically

we need to make the matrix exponential in Eq. (4.6) more tractable. To do this we

transform Eq. (4.6) from the time domain to the complex frequency domain by taking

the Laplace transform. We define the Laplace transform as

bf(s) = L⇥f(t)⇤ =
Z 1

0

�
f(t)e�st dt. (4.7)
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The use of 0� in the lower integration limit allows us to evaluate the Laplace transform

of a delta function, �(t), to unity. This will be useful later in this derivation.

Writing bp(s) = L⇥p(t)⇤, the Laplace transform of Eq. (4.6) is

bp(s) =

Z 1

0

�
p(t)e�st dt

=

Z 1

0

�
exp

⇥�(sI � A)t
⇤ · p(0) dt

= �(sI � A)�1 · ⇥e�(sI�A)t⇤1
0

� · p(0)

= (sI � A)�1 · p(0). (4.8)

As we know that lim
t!1 p(t) = 0, this integral is convergent at least for all Re(s) > 0.

Our strategy is to compute bp
1

(s) and bp
N�1

(s), and from these bṖ
0

(s) = d
1

bp
1

(s) and

bṖ
N

(s) = b
N�1

bp
N�1

(s). Then by performing the inverse transform, we can recover the

arrival time densities Ṗ
0

(t) and Ṗ
N

(t).

Substituting p
i

(0) = �
i,i0 for the initial condition in Eq. (4.8), and reinstating the

explicit notation, the quantities we want to evaluate are

bp
1|i0(s) =

⇥

(sI � A)�1

⇤

1,i0
, (4.9a)

bp
N�1|i0(s) =

⇥

(sI � A)�1

⇤

N�1,i0
. (4.9b)

To proceed, we recall that the (i, j)-th element of the inverse of any invertible

matrix B is given by [B�1]
i,j

= C
j,i

/ detB, where C
j,i

is the (j, i)-th co-factor of B.

Thus we can write

bp
1|i0(s) =

⇥

(sI � A)�1

⇤

1,i0
=

1

det(sI � A)Ci0,1, (4.10)

and likewise for the (N � 1, i
0

)-th element.

To calculate the co-factor C
i0,1, we remove row i

0

and column 1 from sI � A and

evaluate the determinant. Again we indicate removal of elements by shading, such
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that the co-factor is given by

C
i0,1 = (�1)i0+1

�
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(4.11)

where we have introduced the notation a
i

= b
i

+ d
i

for compactness. Using Laplace’s

formula, the co-factor can be expressed as

C
i0,1 = (�1)i0+1

 

i0
Y

i=2

�d
i

!

�

�

�

�

�

�

�
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�

�

�

�

�

s+ a
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�d
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0
. . . . . . �d
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0 �b
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s+ a
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�
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�
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�
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�

�

�

�

=

 

i0
Y

i=2

d
i

!

det
�

sI � A
(N�i0�1)

�

=
i0
Y

i=2

d
i

N�i0�1

Y

↵=1

(s+ x
↵

). (4.12)

The matrix A
(N�i0�1)

consists of the rows and columns i
0

+1, . . . , N � 1 of the matrix

A, i.e. it is the bottom right (N � i
0

� 1)⇥ (N � i
0

� 1) sub-matrix of A. The matrix

�A
(N�i0�1)

has eigenvalues x
↵

> 0 (1  ↵  N � i
0

� 1) and determinant

det
��A

(N�i0�1)

�

=
N�i0�1

Y

↵=1

x
↵

= �
i0 . (4.13)

The (i
0

, N � 1)-th cofactor is required for the computation of bp
N�1|i0(s). Thus we

remove row i
0

and column N�1 from sI�A (again indicated by shading) and evaluate
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the determinant, such that

C
i0,N�1

= (�1)i0+N�1
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(4.14)

Again using Laplace’s formula we arrive at

C
i0,N�1

=

 

N�2

Y

i=i0

b
i

!

det
�

sI � A(i0�1)

�

=
N�2

Y

i=i0

b
i

i0�1

Y

↵=1

(s+ y
↵

). (4.15)

The matrix A(i0�1) consists of rows and columns 1, . . . , i
0

� 1 of the matrix A, i.e. it

is the top-left (i
0

� 1)⇥ (i
0

� 1) sub-matrix of A. The matrix �A(i0�1) has eigenvalues

y
↵

> 0 (1  ↵  i
0

� 1) and determinant

det
��A(i0�1)

�

=
i0�1

Y

↵=1

y
↵

=  
i0 . (4.16)

Putting things together, and writing det(sI � A) =
Q

N�1

�=1

(s+ �
�

), we have the

compact expressions

bp
1|i0(s) =

i0
Y

i=2

d
i

N�i0�1

Y

↵=1

(s+ x
↵

)
N�1

Y

�=1

1

s+ �
�

, (4.17a)

bp
N�1|i0(s) =

N�2

Y

i=i0

b
i

i0�1

Y

↵=1

(s+ y
↵

)
N�1

Y

�=1

1

s+ �
�

. (4.17b)

Using bṖ
0|i0(s) = d

1

bp
1|i0(s) and

bṖ
N |i0(s) = b

N�1

bp
N�1|i0(s), we obtain the Laplace trans-

forms of the arrival time densities at sites i = 0 and i = N , respectively. They are
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given by

bṖ
0|i0(s) = D

i0

N�i0�1

Y

↵=1

(s+ x
↵

)
N�1

Y

�=1

1

s+ �
�

, (4.18a)

bṖ
N |i0(s) = B

i0

i0�1

Y

↵=1

(s+ y
↵

)
N�1

Y

�=1

1

s+ �
�

, (4.18b)

where D
i0 =

Q

i0

i=1

d
i

and B
i0 =

Q

N�1

i=i0
b
i

.

To return to the time domain, we need to perform the inverse Laplace transform.

To do this we will make use of the convolution theorem. For two functions F(t) and

G(t) defined in the domain t � 0, the convolution of the two functions is defined as

[F ⇤ G](t) =
Z 1

0

F(t � ⌧)G(⌧) d⌧, (4.19)

where ‘⇤’ is the convolution operator. The convolution theorem then states

L�1

h

bF(s) · bG(s)
i

= [F ⇤ G](t). (4.20)

Therefore, if the terms s+ x and (s+ �)�1 in Eq. (4.18) can be expressed as Laplace

transforms of specific functions, then the arrival time densities Ṗ
0|i0(t) and Ṗ

N |i0(t) can

be simply expressed as the convolution of those functions.

It is easy to show that (s + �)�1 is proportional to the Laplace transform of an

exponential distribution with parameter � > 0: The exponential distribution is defined

by

E (�)(t) = �e��t for t � 0. (4.21)

The Laplace transform is obtained as follows

L ⇥E (�)(t)
⇤

=

Z 1

0

�
�e��te�st dt

= �

Z 1

0

�
e�(s+�)t dt. (4.22)

This integral is convergent in the region Re(s) > ��. Within this region we have

L ⇥E (�)(t)
⇤

=
�

s+ �
, (4.23)

and hence

L�1

⇥

(s+ �)�1

⇤

=
1

�
E (�)(t). (4.24)
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Deriving the function of time that transforms into s+ z (where z = x
↵

or y
↵

) is a

little more complicated, but we can show that �(t)+z�1�0(t) satisfies this condition (up

to multiplication by a constant). The object �0(t) is the derivative of the Dirac-delta

distribution �(t), which can be defined conveniently by its Fourier transform [74]. It

has the form

�0(t) =

Z 1

�1
(i!)ei!t d!. (4.25)

Evaluating the Laplace transform of �(t) + z�1�0(t) gives

L ⇥

�(t) + z�1�0(t)
⇤

=

Z 1

0

�
[�(t) + z�1�0(t)]e�st dt

=

Z 1

0

�
e�st�(t) dt+ z�1

⇥

e�st�(t)
⇤1
0

� + z�1s

Z 1

0

�
e�st�(t) dt

= 1 + z�1s, (4.26)

where we have used lim
t!0

� �(t) = 0. This expression has no singularities, and thus

the region of convergence in terms of s is the entire complex plane. Hence the inverse

Laplace transform of s+ z is given by

L�1 [s+ z] = z
⇥

�(t) + z�1�0(t)
⇤

. (4.27)

It is useful here to define some further properties of the object �0(t). When it is

convolved with a test function F(t) with infinite support, one obtains (after integration

by parts)
Z 1

�1
�0(t � ⌧)F(⌧) d⌧ = F 0(t). (4.28)

If a test function G(t) has finite support, say t � 0, then one finds

Z 1

0

�0(t � ⌧)G(⌧) d⌧ = G 0(t) + G(0)�(t). (4.29)

Using the convolution theorem (4.19), and Eqs. (4.24) and (4.27), the inverse

Laplace transform of Eq. (4.18) is

Ṗ
0|i0(t) =

D
i0�i0

⇤
E (�1) ⇤ · · · ⇤ E (�N�1) ⇤ �� + x�1

1

�0
� ⇤ · · · ⇤ �� + x�1

N�i0�1

�0
�

, (4.30a)

Ṗ
N |i0(t) =

B
i0 i0

⇤
E (�1) ⇤ · · · ⇤ E (�N�1) ⇤ �� + y�1

1

�0
� ⇤ · · · ⇤ �� + y�1

i0�1

�0
�

, (4.30b)
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where ⇤ = det(�A) =
Q

N�1

↵=1

�
↵

. For compactness we introduce the notation

E
`

= E (�1) ⇤ · · · ⇤ E (�`), (4.31a)

R
`

=
�

� + y�1

1

�0
� ⇤ · · · ⇤ �� + y�1

`

�0
�

, (4.31b)

such that we can write Eq. (4.30b) as

Ṗ
N |i0(t) =

B
i0 i0

⇤
E

N�1

⇤ R
i0�1

. (4.32)

The compact version of Eq. (4.30a) follows analogously.

Before turning to the physical interpretation of Eq. (4.32), it is useful to evaluate

the convolution of an exponential distribution E (�) with an object of the form �+y�1�0.

Using the result of Eq. (4.29), we arrive at

E (�) ⇤ �� + y�1�0
�

=

Z 1

0

�e��⌧

⇥

�(t � ⌧) + y�1�0(t � ⌧)
⇤

d⌧

= �e�t � �2y�1e�t + �y�1�(t)

=
�

y
�(t) +

✓

1 � �

y

◆

E (�)(t). (4.33)

Assuming �/y < 1 (which will be the case throughout our analysis) this describes

a convex combination of a point-mass at zero and an exponential distribution. To

obtain samples from this hybrid distribution, one chooses t = 0 with probability �/y,

otherwise t is drawn from E (�)(t). An example of this distribution is illustrated in

Fig. 4.2.

The result (4.33) has an important implication for the interpretation of Eq. (4.32).

As Eq. (4.33) describes a distribution, the quantity E
N�1

⇤ R
i0�1

in Eq. (4.32) is also

a distribution. Thus we have

Z 1

0

Ṗ
N |i0(t) dt =

B
i0 i0

⇤

Z 1

0

E
N�1

⇤ R
i0�1

dt =
B

i0 i0

⇤

) �
N |i0 =

B
i0 i0

⇤
, (4.34)

where �
N |i0 is the fixation probability of i

0

mutants.

Eqs. (4.30) have further implications. Choosing the initial conditions i
0

= N �1 in

Eq. (4.30a) and i
0

= 1 in Eq. (4.30b) means there are no objects of the form �+ z�1�0.
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Exponential, l=5
Hybrid, l=5, y=25
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Figure 4.2. A comparison between the distribution (4.33) and the exponential distribu-
tion (4.21). Parameters are � = 5, y = 25, and the histograms are generated from 105

samples of each distribution.

Hence Eqs. (4.30) reduce to

Ṗ
0|N�1

(t) = E (�1) ⇤ · · · ⇤ E (�N�1) = �
0|N�1

E
N�1

, (4.35a)

Ṗ
N |1(t) =

B
1

⇤
E (�1) ⇤ · · · ⇤ E (�N�1) = �

N |1EN�1

. (4.35b)

From this we conclude
Ṗ
0|N�1

(t)

�
0|N�1

=
Ṗ
N |1(t)

�
N |1

, (4.36)

that is the conditional arrival time distribution at state i = 0 given i
0

= N � 1 is

equal to the conditional arrival time distribution at state i = N given i
0

= 1. This

symmetry has been known for the mean fixation time [63, 119], and it was recently

shown that the correspondence holds for the full distribution [118]. Our approach

o↵ers an alternative way to obtain this intriguing result.

4.4 Physical interpretation

We now discuss two possible interpretations of Eq. (4.32) [or equivalently Eqs. (4.30)].

These di↵erent representations arise because the convolution operator (4.19) is com-

mutative, such that we can order the convolutions in Eq. (4.32) in multiple ways. We

proceed to analyse the di↵erent cases separately. In this section we only focus on

arrival at state N . Interpretations for arrival at state 0 follow analogously.
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Pairing � + y�1
↵

�0 with individual exponential distributions E (�
�

)

For want of a catchier title, this process describes evaluating convolutions between

each object � + y�1

↵

�0 in Eq. (4.32) with a separate exponential distribution E (��). We

choose to couple the object � + y�1

↵

�0 with E (�N�↵). Using the result of Eq. (4.33), we

can write Eq. (4.32) as

Ṗ
N |i0(t)

�
N |i0

= E (�1) ⇤ · · · ⇤ E (�N�i0 ) ⇤


�
N�i0+1

y
i0�1

� +

✓

1 � �
N�i0+1

y
i0�1

◆

E (�N�i0+1)

�

⇤ . . .

· · · ⇤


�
N�1

y
1

� +

✓

1 � �
N�1

y
1

◆

E (�N�1)

�

. (4.37)

We stress that the objects � + y�1

↵

�0 can be paired with any of the exponential dis-

tributions. We chose to match them in this way so that the reduced chains can be

systematically compared. We now ensure that the eigenvalues are ordered such that

�
N�↵

/y
↵

< 1 for all ↵. Such an ordering is always possible due to the interlacing

property of the eigenvalues [111].

We now can see that the arrival time distribution, Ṗ
N |i0(t)/�N |i0 , is given by the

distribution of the sum of N�1 random variables drawn from exponential distributions

or the mixed distribution in Eq. (4.33). This means that an arrival time [a sample of

the distribution (4.37)] can be expressed as the sum of these N � 1 random variables.

With this we can construct a forward-only process consisting of N � 1 jumps from

states 1 to N in eigenspace. The first N � i
0

jumps are compulsory exponential steps,

whereas the final i
0

� 1 steps are each exponentials that have a finite probability

(�
N�↵

/y
↵

) of being skipped.

We can make further simplifications to this process by multiplying out the brackets

in Eq. (4.37). This creates a total of 2i0�1 possible forward-only channels with up to

i
0

� 1 exponential steps skipped, as shown in Fig. 4.3.

Arrival time samples of the original process are generated from Fig. 4.3 in the

following way: One of the channels is chosen with probability determined by products

of the terms �
N�↵

/y
↵

and 1 � �
N�↵

/y
↵

, which emerge from the expansion of the
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Figure 4.3. A set of forward-only processes in eigenspace. The �

↵

are eigenvalues of
�A, and each arrow represents an exponential process with the rate indicated. In each run
one channel is chosen with appropriate probability. Transitions indicated by dashed arrows
are skipped (zero time). This process generates arrival times distributed identically to the
process in Fig. 4.1. The case shown here is for arrival at N , starting from i

0

= 3 in the
original space, such that a maximum of two possible steps can be skipped.

brackets in Eq. (4.37). After a channel has been selected, the clock is started and the

forward-only process of the channel is traversed. The clock is stopped when the final

state in the schematic is reached (‘absorption’).

Recursively convolving � + y�1
↵

�0 with the exponential chain E
`

An alternative approach is to successively convolve the i
0

� 1 objects of the form

� + y�1

↵

�0 with the full exponential chain E
N�1

from the right. We note that

E


⇤ �� + y�1

↵

�0
�

=



�


y
↵

E
�1

(t) +

✓

1 � �


y
↵

◆

E


(t)

�

, (4.38)

which follows directly from Eq. (4.33). Using this we see that each of the recursive

convolutions introduces a new exponential chain with one step less. Thus, by per-

forming all the convolutions, the arrival time distribution can be expressed as a linear

combination of the distributions E
N�↵

(1  ↵  i
0

), which we write as

Ṗ
N |i0(t)

�
N |i0

=
i0
X

↵=1

G
(y)

N�↵

E
N�↵

(t), (4.39)
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Figure 4.4. A single forward-only chain in eigenspace in which the final state can be reached
directly from some of the intermediate states. The �

↵

are eigenvalues of �A, and each arrow
represents an exponential process with the rate indicated. The quantity F

↵

denotes the
probability that the next state of the dynamics in eigenspace is ↵ + 1, as opposed to N ,
if the current state is ↵. This process generates arrival times distributed identically to the
process in Fig. 4.1. The case shown here is for arrival at N , starting from i

0

= 3 in the
original space.

where the G
(y)

N�↵

are constants (independent of time). These coe�cients are given by

G
(y)

N�↵

=
1

 
i0

 

↵�1

Y

�=1

�
N��

!

↵

X

�1=1

(y
�1 � �

N��1)
↵

X

�2=�1

(y
�2+1

� �
N��2)

↵

X

�3=�2

. . .

· · ·
↵

X

�i0�↵=
�i0�↵�1

�

y
�i0�↵+i0�↵�1

� �
N��i0�↵

�

. (4.40)

We note here that the G
(y)

N�↵

must satisfy

i0
X

↵=1

G
(y)

N�↵

= 1, (4.41)

for Eq. (4.39) to be normalised.

From Eq. (4.39), we can generate samples from the arrival time distribution by

choosing one of i
0

exponential channels with probability G
(y)

N�↵

in which the last ↵� 1

exponential steps are skipped (1  ↵  i
0

). We can again make further simplifications

to this process by expressing the linear combination (4.39) as the single chain shown

in Fig. 4.4. In this representation the system can transition to two possible states if

currently in eigenstate ↵: either ↵ ! ↵ + 1 or ↵ ! N . These paths have transition

rate F
↵

�
↵

and (1 � F
↵

)�
↵

, respectively. The total transition rate out of eigenstate ↵

is then �
↵

, and the waiting time at ↵ is an exponential distribution with parameter

�
↵

independent of whether the system transitions to ↵ + 1 or to N . The quantity F
↵

denotes the probability that the next state of dynamics in eigenspace is ↵ + 1, if the
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system is currently in eigenstate ↵. With probability 1�F
↵

the next state is eigenstate

N . Evaluating the probability of a trajectory in terms of F
↵

, and then matching with

Eq. (4.39) gives

F
↵

=

1 �
↵

P

=1

G
(y)



1 �
↵�1

P

=1

G
(y)



for ↵ < N � 1. (4.42)

Arrival time samples are generated from Fig. 4.4 by traversing the forward-only

chain, which can easily be simulated with the Gillespie algorithm [94], see Sec. 2.9. In

practice, however, we find that evaluating the recursive sums in Eq. (4.40) is ine�cient

in comparison with the method described in Fig. 4.3.

Comparison of the two approaches

The representation shown in Fig. 4.3 corresponds to the picture obtained for a re-

stricted set of processes by probabilistic methods in Ref. [111]. On the other hand,

Fig. 4.4 reflects the findings of Refs. [114] and [115], derived from the construction

of so-called ‘intertwining processes’. Our analysis shows that these di↵erent decom-

positions originate from one common structure, Eq. (4.32). The explicit schemes in

Figs. 4.3 and 4.4 provide a computational method to generate samples from the arrival

time distribution, for example by carrying out simulations of these forward processes

using the Gillespie algorithm [94]. It is important to keep in mind that the eigenstates

shown in Figs. 4.3 and 4.4 cannot be mapped one-to-one to the real-space states in

Fig. 4.1. The equivalence of the real and eigenspace representations only holds on the

level of arrival time statistics.

‘Bottom-line’ arrival time distributions

The final expressions for the arrival time distributions follow directly from Eq. (4.39).

First we note that the convolution of ` exponential distributions has the form

E
`

(t) =

 

`

Y

↵=1

�
↵

!

`

X

↵=1

`

Y

�=1

� 6=↵

1

�
�

� �
↵

e��↵t. (4.43)
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We note that this expression only holds if the eigenvalues �
↵

are distinct. The con-

volution of two identical exponential distributions is given by a Gamma distribution,

but there is no neat general expression for the convolution of multiple exponential and

Gamma distributions with di↵erent parameters.

Substituting the result (4.43) into Eq. (4.39), we arrive at the final expression for

the conditional arrival time distribution at state N ,

Ṗ
N |i0(t)

�
N |i0

=

 

N�1

Y

↵=1

�
↵

!

1

 
i0

N�1

X

↵=1

2

6

6

6

6

6

4

i0�1

Q

�=1

(y
�

� �
↵

)

N�1

Q

�=1

� 6=↵

(�
�

� �
↵

)

e��↵t

3

7

7

7

7

7

5

=
⇤

 
i0

N�1

X

↵=1

C(y)

↵

e��↵t. (4.44)

From Eq. (4.44) it is simple to compute the mean fixation time. This is given by

hti =
Z 1

0

t
Ṗ
N |i0(t)

�
N |i0

dt =
⇤

 
i0

N�1

X

↵=1

C
(y)

↵

�2
↵

. (4.45)

In fact all higher moments can be computed just as easily, such that

htri =
Z 1

0

tr
Ṗ
N |i0(t)

�
N |i0

dt =
⇤

 
i0

N�1

X

↵=1

C
(y)

↵

r!

�r+1

↵

. (4.46)

Finally, we state that the conditional arrival time distribution at state 0 is

Ṗ
0|i0(t)

�
0|i0

=

 

N�1

Y

↵=1

�
↵

!

1

�
i0

N�1

X

↵=1

2

6

6

6

6

6

4

N�i0�1

Q

�=1

(x
�

� �
↵

)

N�1

Q

�=1

� 6=↵

(�
�

� �
↵

)

e��↵t

3

7

7

7

7

7

5

=
⇤

�
i0

N�1

X

↵=1

C(x)

↵

e��↵t, (4.47)

and the unconditional distribution is given by Ṗ
0|i0(t) + Ṗ

N |i0(t).

4.5 Application to evolutionary games

As an application of this theory we now consider examples of evolutionary dynamics

with frequency-dependent selection, as described in Sec. 2.8. For this example we
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Figure 4.5. The conditional fixation time distributions at i=N for di↵erent games. Lines
show results from the theory, Eq. (4.44). Symbols are from Gillespie simulations (106 runs
per game) of the birth–death process. The mean fixation times (arrows) are not a good
description of the distributions, especially for the coexistence game where the distribution
is very broad. Parameters used in this figure are N = 100, i

0

= 10, � = 0.1. The payo↵
matrix parameters are: Coexistence game: R = P = 1.0, S = T = 1.5; Coordination game:
R=P =1.5, S =T =1.0; Prisoner’s dilemma: R=�S =0.5, T =1.0, P =0.0).

assume a pairwise-comparison process, leading to the birth and death rates

b
i

=
i(N � i)

N
g[+�⇡(i)], (4.48a)

d
i

=
i(N � i)

N
g[��⇡(i)], (4.48b)

where �⇡(i) = ⇡
A

(i) � ⇡
B

(i) and g(z) = (1 + �z) /2 for selection intensity �. The

payo↵s are as described in Eq. (2.74), and the payo↵ matrix is parametrised by R, S,

T , and P , as described in Eq. (2.73).

As shown in Fig. 4.5, arrival time distributions in the di↵erent games can be broad

and skewed, such that the mean fixation time contains only limited information. Our

theory, however, accurately captures the complete arrival time distributions which

are measured from simulations, giving complete information about the arrival time

statistics.

The generalisation of the Karlin–McGregor result to include arbitrary initial con-

ditions was a crucial step. As seen in Fig. 4.6, the initial condition can have a great

e↵ect on the conditional arrival time distribution, illustrated here for the Prisoner’s

dilemma. When the initial condition i
0

is close to the final state N , the distribu-

tion is much more peaked than is the case when i
0

is close to state 0. The inset of
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Figure 4.6. The conditional fixation time distributions at i=N for di↵erent initial condi-
tions in the Prisoner’s dilemma. Lines show results from the theory, Eq. (4.44). Inset plot
is the same data represented on a logarithmic vertical axis. Parameters used are the same
as Fig. 4.5.

Fig. 4.6 shows that the distribution tails all decay with the same exponent, given by

the slowest (closest to zero) eigenvalue of the matrix A. However, the amplitude of

the distribution in the tails is vastly di↵erent across the initial conditions.

4.6 Equilibration processes in systems with muta-

tion

Now that we have calculated the complete arrival time distribution, we will use it to

establish a link between fixation processes and the approach to stationary distributions.

For this we consider birth–death processes without absorbing states. As described in

Sec. 3.5, this can be achieved by adding mutation occurring at a rate u ⌧ 1, such that

b
0

= O (u) and d
N

= O (u). All other transition rates depicted in Fig. 4.1 are O (u0)

and are only a↵ected at sub-leading order by u. We will consider transition rates of

the form

b
i

= (1 � u)
i(N � i)

N
g[+�⇡(i)] +

u

2

(N � i)2

N
, (4.49a)

d
i

= (1 � u)
i(N � i)

N
g[��⇡(i)] +

u

2

i2

N
, (4.49b)

where we keep the same pairwise-comparison process as used in the previous section,

i.e. g(z)=(1 + �z) /2, and the payo↵s are not a↵ected by u.
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Figure 4.7. Phase portraits of processes described by the rates (4.49) with and without
mutation. Arrows indicate the sign of ẋ, which represents the direction of selection. Panel
(a) shows the deterministic dynamics of the (symmetric) coordination game, with payo↵s
from Eq. (4.50a). Panel (b) shows the deterministic dynamics of the Prisoner’s dilemma,
with payo↵s from Eq. (4.50b). For both panels the selection intensity is � = 0.1.

Throughout this section we will focus on two games: a symmetric coordination

game and the Prisoner’s dilemma. These games are described by the payo↵ matrices

Coordination game:

A B

A 1.5 1.0

B 1.0 1.5,

(4.50a)

Prisoner’s dilemma:

A B

A 0.5 �0.5

B 1.0 0.0,

(4.50b)

and the payo↵ functions are given in Eq. (2.74). In Fig. 4.7, we show the phase

portraits of the deterministic dynamics of these games with and without mutation.

As described in Sec. 2.6, we have x = lim
N!1 i/N and ẋ = lim

N!1(b
i

� d
i

)/N . The

e↵ect of mutation is to push the stable (previously absorbing) fixed points towards the

centre of the domain. When mutation is present, there is always some ‘force’ pushing

the population away from the boundaries.

As there are no absorbing states when u > 0, the dynamics reaches a stationary

distribution, Pst, with full support, i.e. P st

i

> 0 for all 0  i  N . From Eq. (2.54),

this distribution can be expressed as

P st

0

=

 

N

X

i=0

i

Y

j=1

b
j�1

d
j

!�1

, P st

i>0

=

 

i

Y

j=1

b
j�1

d
j

!

P st

0

. (4.51)
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Figure 4.8. Stationary distributions of the birth–death process described by rates (4.49)
for di↵erent values of u, as described in Eq. (4.51). Panel (a) shows stationary distributions
of the (symmetric) coordination game, with payo↵s from Eq. (4.50a). Panel (b) shows the
stationary distributions of the Prisoner’s dilemma, with payo↵s from Eq. (4.50b). For both
panels the selection intensity is � = 0.1 and the system size is N = 50.

Examples of these distributions are shown in Fig. 4.8(a) for the coordination game and

Fig. 4.8(b) for the Prisoner’s dilemma. For large values of u, the mutation dominates

the dynamics and this results in a peak in the centre of the domain. However, as u

decreases so does the probability mass located in the interior of the domain in the

stationary state. Hence as u ! 0, the distribution becomes peaked at the boundaries.

The timescale of the system with mutation is characterized by the so-called ‘mix-

ing time’, t
mix

, as described in Sec. 2.5. This is the time taken for the probability

distribution, P(t), to come within a specified distance of the stationary distribution

Pst, i.e. t
mix

is the first time at which d[P(t
mix

),Pst] = ". The distance between

distributions P and Q commonly used in this context is d[P,Q] =
P

N

i=0

|P
i

� Q
i

|/2
with " = 1/2 [60, 70]. Using our results we can determine if and when there is a

correspondence between the mixing time in systems with mutation and the fixation

time in systems without mutation. We now describe the dynamics in each of these

cases (with and without mutation) separately.

Dynamics without mutation

In the system without mutation all realisations reach fixation eventually. If the dy-

namics is started from state i
0

[i.e. P
i

(t = 0) = �
i,i0 ], the stationary state of the
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birth–death process is of the form

�
i|i0 = (1 � �

N |i0)�i,0 + �
N |i0�i,N , (0  i  N). (4.52)

The quantity �
N |i0 is the probability that the process reaches the absorbing state N , as

described by Eq. (4.34). The probability of being absorbed at state 0 is then 1��
N |i0 .

Let us now consider the distance of the distribution P(t) from this distribution,

d[P(t),�] =
1

2

"

�

�P
0

(t) � (1 � �
N |i0)

�

�+
N�1

X

i=1

P
i

(t) +
�

�P
N

(t) � �
N |i0

�

�

#

. (4.53)

Probability continuously flows into the absorbing states, hence P
0

(t)  1 � �
N |i0 and

P
N

(t)  �
N |i0 for all t. We can therefore simplify the above expression, and we are

left with

d[P(t),�] =
1

2

"

(1 � �
N |i0) � P

0

(t) +
N�1

X

i=1

P
i

(t) + �
N |i0 � P

N

(t)

#

=
1

2

"

1 � P
0

(t) � P
N

(t) +
N�1

X

i=1

P
i

(t)

#

= 1 � P
0

(t) � P
N

(t). (4.54)

This means that the distance d(t) = d[P(t),�] is given by the probability that the

system has not yet reached fixation in either of the absorbing states by time t. This in

turn means that 1 � d(t) = Pr(t
fix

 t) is the probability to have reached fixation by

time t, i.e. 1 � d(t) is the cumulative distribution of the unconditional fixation time

t
fix

. Thus the first time when the distance is equal to the mixing time threshold, i.e.

d(t) = ", corresponds to the (1 � ")-th percentile of the fixation time distribution. In

particular, the first time at which d(t) = 1/2 is the median fixation time.

Aside: As 1 � d(t) = Pr(t
fix

 t) is the cumulative distribution, it follows that �ḋ(t)

is the probability density function of the unconditional fixation time. With this we

can express the mean unconditional fixation time as

ht
fix

i =

Z 1

0

t
h

�ḋ(t)
i

dt

=
⇥�td(t)

⇤1
0

+

Z 1

0

d(t) dt

=

Z 1

0

d(t) dt. (4.55)

Thus the mean unconditional fixation time is the area under the curve d(t).
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Figure 4.9. Probability masses at either boundary and the total probability mass in the
interior of the domain in the stationary state. Panel (a) is the result for the (symmet-
ric) coordination game [Eq. (4.50a)]. Panel (b) is the result for the Prisoner’s dilemma
[Eq. (4.50b)]. As selection is predominantly directed towards the boundary at i = 0 in the
Prisoner’s dilemma [Fig. 4.7(b)], we have P

st

0

> P

st

N

. For both panels the selection intensity
is � = 0.1 and the system size is N = 50.

Dynamics with mutation

In the limit of small mutation rates (0 < uN ⌧ 1), it can be seen from Eq. (4.51) that

P st

i

P st

0

=
b
0

b
i

 

i

Y

j=1

b
j

d
j

!

= O (u) for 1  i  N � 1, (4.56)

and
P st

N

P st

0

=
b
0

d
N

 

N�1

Y

j=1

b
j

d
j

!

= O (1) . (4.57)

Together with the normalisation condition (
P

N

i=0

P st

i

= 1) we can determine that

P st

0

and P st

N

must be O (u0), and the remaining probability masses in the interior are

O (u). This e↵ect can be seen in Fig. 4.8. It is verified in Fig. 4.9, where we plot the

probability masses at either boundary and the total interior mass in the stationary

state as a function of u. It is seen that both boundary values converge to a fixed value

as u ! 0, whereas the interior mass decreases as a power of u (in fact it scales as u1).

As the stationary distributions are peaked at the boundaries for small values of u,

we can write

P st

i

= (1 � �)�
i,0

+ ��
i,N

+ O (u) , (0  i  N) (4.58)

where � = P st

N

/(P st

0

+ P st

N

) = O (u0). It is clear that this distribution is not the same

as � given in Eq. (4.52): Pst in systems with u > 0 is independent of the initial
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condition, unlike �. Thus there is no obvious connection between fixation times (the

approach to �) and mixing times (the approach to Pst) in the limit u ! 0.

However, equilibration in many systems with rare mutations is a two-step process;

the system first reaches a quasi-stationary distribution that is dependent on the initial

condition, before ‘leaking’ on a longer timescale into the final stationary state [60].

As the interior birth and death rates of the systems with and without mutation di↵er

only by corrections of O (u), we expect the dynamics on a short timescale (t ⌧ u�1)

to be essentially the same in both systems. The e↵ects of mutation can only be seen

on a longer timescale. We argue that the system initially approaches a distribution

close to � before reaching its stationary distribution Pst.

Let P(u=0)(t) =
⇥

P
(u=0)

0

(t), . . . , P (u=0)

N

(t)
⇤

T

be the probability distribution of the

system without mutation. The time evolution is described by the master equation

Ṗ
(u=0)

= W · P(u=0), (4.59)

whereW is the (N+1)⇥(N+1) transition matrix from Eq. (4.1). In fact, this equation

is exactly Eq. (4.1). Let P(u)(t) be the distribution in the system with mutation whose

evolution is described by

Ṗ
(u)

=
�

W+ uQ
� · P(u), (4.60)

where the matrix Q reflects the di↵erence between the systems with and without

mutation. The elements of both matrices W and Q are independent of u. Now, let

q(t) = P(u)(t) � P(u=0)(t), such that

q̇ = W · q+ uQ · P(u). (4.61)

We want to calculate how the separation, q, grows in time given that both systems

(with and without mutation) start from the same initial condition [i.e. q(0) = 0].

For this purpose it is convenient to work in the eigenspace of W. As described in

Eq. (4.5), W has two zero eigenvalues, µ
0

= µ
N

= 0, with eigenvectors v
(0)

i

= �
i,0

and v
(N)

i

= �
i,N

. These are the absorbing states of the system without mutation. The

remaining eigenvalues of W, µ
↵

(1  ↵  N � 1), are negative (c.f. Sec. 4.3).
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Figure 4.10. Probability masses as a function of time at either boundary in systems
without (solid lines) and with (symbols) mutation. Without mutation, P

N

(t) is given by
the integral of Eq. (4.44) and P

0

(t) by the integral of Eq. (4.47). These values converge to
�

N |i0 and �

0|i0 = 1 � �

N |i0 (dotted lines) as t ! 1. The probability masses in the system
with mutation, found from numerical integration of the master equation, initially follow the
trajectory of the system without mutation before approaching the stationary state (dashed
lines). Panel (a) is the result for the (symmetric) coordination game [Eq. (4.50a)], in which
the probability masses at each boundary in the stationary state are equal (just below 0.5).
Panel (b) is the result for the Prisoner’s dilemma [Eq. (4.50b)]. For both panels the selection
intensity is � = 0.1, the system size is N = 50, and the initial condition used is i

0

= 40. The
mutation rate is u = 10�4.

Decomposing q(t) =
P

↵

eq
↵

(t)v(↵) into eigendirections v(↵) of W we have

ėq
↵

= µ
↵

eq
↵

+ ug
↵

(t), (4.62)

where we have written Q · P(u)(t) =
P

↵

g
↵

(t)v(↵) and we note that g
↵

(t) = O (u0).

This can be integrated to give

eq
↵

(t) = u

Z

t

0

eµ↵(t�⌧)g
↵

(⌧) d⌧. (4.63)

On short timescales (t ⌧ u�1) we have eq(t) = O (u), and hence the separation q(t)

is also O (u). That is to say in the limit u ! 0, both systems (with and without

mutation) initially evolve along the same trajectory. On this timescale both systems

approach the distribution �. This is shown in Fig. 4.10.

On a longer time scale [t = O (u�1)], di↵erences between the two systems become

of O (u0). However, these di↵erences are concentrated on the states i = 0 and i = N

as this is where all the probability mass is located. E↵ectively, a redistribution of

probability mass between the boundary states takes place. The distribution of the

system with mutation evolves from (1 � �
N |i0)�i,0 + �

N |i0�i,N + O (u) to P st

i

= (1 �
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�)�
i,0

+ ��
i,N

+ O (u), as shown in Fig. 4.10.

Approximating the stationary distribution of the system with small mutation rate

as P st

i

= (1 � �)�
i,0

+ ��
i,N

[i.e. neglecting terms O (u)], the distance between the

distribution P(u)(t) at time t and the stationary distribution is

d[P(u)(t),Pst] ⇡ 1

2

"

�

�

�

P
(u)

0

(t) � (1 � �)
�

�

�

+
N�1

X

i=1

P
(u)

i

(t) +
�

�

�

P
(u)

N

(t) � �
�

�

�

#

. (4.64)

While P
(u=0)

0

(t) and P
(u=0)

N

(t) are monotonically increasing with time in the system

without mutation, this is not necessarily the case if there is mutation. This can be seen

for P
N

(t) in Fig. 4.10. Hence we cannot easily drop the absolute values in Eq. (4.64)

as in the case without mutation.

Relation between dynamics with and without mutation

We observe, though, that P (u)

0

(t = 0) = 0 and P
(u)

N

(t = 0) = 0 for 0 < i
0

< N . Hence

there is an initial phase of the dynamics in which P
(u)

0

(t) < 1�� and P
(u)

N

(t) < �. Let

us write t⇤ for the first time at which either P
0

(t⇤) = 1 � � or P
N

(t⇤) = � (whichever

happens first). In Fig. 4.10(a), we can identify this time as t⇤ ⇠ 101–102, i.e. when

P
N

(t) = P st

N

. In Fig. 4.10(b), however, t⇤ ⇠ 100–101.

Prior to the time t⇤ we have

d[P(u)(t),Pst] ⇡ 1

2

"

(1 � �) � P
(u)

0

(t) +
N�1

X

i=1

P
(u)

i

(t) + � � P
(u)

N

(t)

#

= 1 � P
(u)

0

(t) � P
(u)

N

(t). (4.65)

This is the same [up to O (u)] as the distance to the fixation distribution, �, in the

system without mutation, given in Eq. (4.54). From this we can conclude that

d[P(u)(t),Pst] ⇡ d[P(u)(t),�] for t < t⇤. (4.66)

This is illustrated in Fig. 4.11, where the distributions Pst and � are represented as

single points in the (P
0

, P
N

) plane. The approximate equality (4.66) only holds for

points on the trajectory [P (u)

0

(t), P (u)

N

(t)] which lie inside the shaded region shown in

Fig. 4.11. If the fixation distribution, �, and the stationary distribution are similar,
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Figure 4.11. Approach to the stationary distribution for the coordination game described

by payo↵ matrix (4.50a). Dots show the trajectory of [P (u)

0

(t), P (u)

N

(t)] from Fig. 4.10(a).
The probability quickly approaches the fixation distribution, �, before slowly leaking to
the stationary state, Pst. For 0 < i

0

< N , the trajectory starts at (0, 0) and leaves the
shaded area at time t

⇤. For any point inside the shaded area, the distance to the points
(1 � �

N |i0 , �N |i0) and (1 � �, �) in our metric (solid lines) are equal. Parameters are as in
Fig. 4.10(a).

then a lot of the trajectory [P (u)

0

(t), P (u)

N

(t)] will be contained in this shaded region,

and the equality (4.66) holds for a longer period of time.

As we have determined that the systems with and without mutation initially evolve

along the same trajectory, we can extend the approximate equality (4.66) to

d[P(u)(t),Pst] ⇡ d[P(u)(t),�] ⇡ d[P(u=0)(t),�] for t < t⇤. (4.67)

Thus the first time at which d[P(u)(t),Pst] = ", provided t < t⇤, is approximately the

(1�")-th percentile of the unconditional fixation time distribution. Choosing " = 1/2,

we have the equivalence between the mixing time and the median fixation time. This is

illustrated in Fig. 4.12 where we consider the coordination game. Again it is important

to stress that this equivalence only holds if t⇤ satisfies d[P(u)(t⇤),Pst]  ". It does not

hold in the example of the Prisoner’s dilemma shown in Fig. 4.10(b), as the distance

to the stationary state (or the fixation distribution) when P
N

(t) crosses the dashed

line representing the stationary distribution is close to one, i.e. larger than ".
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Figure 4.12. Correspondence of mixing time and median fixation time for small mutation
rates. Panel (a) shows the unconditional fixation time distribution for the coordination game,
constructed from Eqs. (4.44) and (4.47). Panel (b) depicts the mixing time for u > 0 and
" = 1/2 (from numerical integration of the master equation). Remaining parameters are as
in Fig. 4.10(a).

4.7 E�ciency of the method

Finally we briefly comment on the e�ciency of our approach. The forward-only pro-

cess described in Fig. 4.3 provides a very simple method of sampling from the arrival

time distributions. We compare the computational cost of this method with the cost

of simulating the original birth–death process using the Gillespie algorithm. Specifi-

cally, we measure how long it takes, in absolute ‘wall-clock’ time,2 to generate 1,000

samples from the unconditional and conditional arrival time distributions. These re-

sults are shown in Fig. 4.13. The time to generate samples using the forward-only

process is always shorter than simulating the original process. This di↵erence is par-

ticularly noticeable when sampling from the conditional distributions. When using

the forward-only process we only need to generate the eigenvalues of the matrix A

and one of the sub-matrices A(i0�1) or A
(N�i0�1)

(depending on the arrival state), and

we have full control over the arrival state. On the other hand, when simulating the

2All samples were generated on the same computer, a 2012 MacBook Air with 1.8GHz i5 processor
running OSX 10.10.4. Software used is Mathematica 9.0.1, and times were measured using the
AbsoluteTiming[] function.
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Figure 4.13. Times to generate 1,000 samples of (a) the unconditional arrival time, and
(b) the arrival time conditioned on reaching state N . Empty symbols/dashed lines show the
time taken to generate samples by simulating the forward-only process in Fig. 4.3, including
the time to compute all eigenvalues of �A and its sub-matrices. Filled symbols show the
time taken to generate samples through Gillespie simulations of the original birth–death
process. The payo↵ parameters used are the same as in Fig. 4.5. The remaining parameters
are � = 0.1 and i

0

= N/10.
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Figure 4.14. Times to generate the unconditional arrival time distribution. Empty sym-
bols/dashed lines show the time taken using our spectral method. Filled symbols show the
time taken to numerically integrate the master equation (4.1) until the median unconditional
fixation time, i.e. up to the time at which P

0

(t) + P

N

(t) = 1/2. Here we use the simple
explicit Euler numerical integration method with time-step �t = 1/N [120]. Parameters are
as in Fig. 4.13.
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original birth–death process there is no control over the arrival state, and many reali-

sations may arrive at the ‘wrong’ boundary. Thus the computation cost is related to

both the fixation time, which is exponentially long in the coexistence game [63], and

the fixation probability, which is exponentially small in the coordination game and

Prisoner’s dilemma when the mutants have to overcome adverse selection [63].

An alternative approach to measure the computation cost is to compare how long

it takes to obtain the arrival time distribution using our spectral method with the time

taken to numerically integrate the master equation (4.1). In Fig. 4.14 the benefits of

our approach over the conventional methods are clearly seen.

As a final remark, we state that our method is limited by the computational ef-

ficiency of evaluating the eigenvalues of the tridiagonal matrix A. Numerical tests

have shown that this computation can become unstable when N ⇡ 1500. For larger

matrices computational precision limits the calculation of the smallest eigenvalues.

4.8 Summary

Birth–death processes have received significant attention partly because of their ap-

plicability [14, 62], but mainly because of their apparent simplicity. However, a clear

understanding of fixation in these processes was lacking, or was lost deep within the

literature of probability theory. Existing studies have been limited to investigating

the distribution of fixation times in specific birth–death processes, or have simply

been limited to finding the mean. As we have shown, however, sometimes the mean

does not contain enough information to accurately represent the fixation statistics. In

this Chapter we have considered a birth–death process with two absorbing states that

describes the evolution of a population featuring two types of individual, where the

types may be genotypes or strategies, for example. The probability that, a single type

of individual or strategy takes over the population, and the time that this takes, is

dependent on the initial condition. We formulated our theory to allow for a general

starting point for the state of the population. This is in contrast to some of the prob-

ability theory literature, where reflecting boundaries or specific initial conditions are
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required to obtain results [107,108].

The main result of this work is the closed-form solutions for the fixation time

distributions, along with e�cient methods of sampling from these distributions by

reducing the birth–death process to a forward-only process in a di↵erent space of

states. These results are expressed in terms of the spectrum of the original process.

To illustrate these results we calculated the distributions of arrival times in a collection

of evolutionary games. This showed that, especially when a coexistence of strategies

is favoured by selection, the arrival time distributions can be broad and skewed, and

vary greatly with the choice of initial condition.

Using these results, we have established a link between the time-to-fixation in the

birth–death process with absorbing states, and the time-to-equilibration in systems

where rare mutations can reintroduce lost strategies/genotypes. In the limit of small

mutation rates, and under specific choices of game, we have demonstrated the equiv-

alence of the so-called mixing time with the median fixation time.

The reduced forward-only processes provide methods to sample from the arrival

time distributions, and these have been shown to be much more e�cient than simu-

lating the original birth–death process. This is emphasised when sampling from the

conditional arrival time distribution as we have complete control of the terminal state,

which is in contrast with simulations of the original process.

In this work we have placed existing representations for simpler cases into a wider

and more coherent context [111, 114, 115]. We have established that di↵erent repre-

sentations reported in the probability theory literature stem from a single common

origin. Nevertheless, there are fundamental open questions. Claims of probabilistic

interpretations of Karlin and McGregor’s theorem have been made [112, 113], but in

our view this picture is still incomplete. We would argue that a full probabilistic in-

terpretation of the representations in eigenspace is only reached when each time-step

of the forward-only process can be constructed directly and uniquely from realisations

of the original process alone. Whether or not this is possible is unclear.
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Chapter 5

Metastable states in a model of can-

cer initiation

5.1 Introduction

We now turn our attention to a more applied subject, the accumulation of mutations

and the initiation of cancer. With an ageing population, the prevalence of this genetic

disease in the UK (and across developed countries) has sky-rocketed, with one in two

people expected to be diagnosed with cancer in their lifetime [21]. This issue is close to

the hearts of the British population. Cancer Research UK, the UK’s leading healthcare

charity, received donations in excess of £500m in the last financial year, 80% of which

was used to fund research [121]. Although the majority of research is clinical or

experimental, theoretical approaches greatly contribute to our understanding of this

malady.

The initiation and progression of cancer is a result of the accumulation of genetic

alterations [122]. The dynamics of mutation acquisition is governed by evolutionary

parameters such as the rate at which alterations arise, the selection e↵ect that these

alterations confer to cells, and the size of the population of cells that proliferate within

a tissue. Therefore these processes are amenable to mathematical investigation, and

much e↵ort has been devoted to modelling these systems and analysing the rates at

115
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which mutations arise within pre-cancerous tissues [23–29,123–128].

Models of the initiation and progression of cancer vary dramatically in their com-

plexity and tractability. At the most complex end of the scale, mathematical models

consider explicit tissue structure and mechanics [129, 130], as well as resource com-

petition and the creation of ‘public goods’ [131]. Simpler spatial models have been

designed to replicate some tissue structures, such as the linear process for describing

the accumulation of mutations in a colorectal crypt [33]. In terms of the dynam-

ics of mutation acquisition, the e↵ects of genetic instabilities [34] or the hierarchical

organisation of cells within the population [132] have been considered.

At the more tractable end of the scale of cancer models are the well-mixed, birth and

death representations of mutation acquisition. For tumour progression, modelling a

growing population is crucial as, by definition, cancerous phenotypes in the population

grow in an uncontrolled manner [29]. For this reason branching processes have been

used to describe the progression of cancer [28, 32]. During the initiation of cancer,

however, the number of cells in pre-cancerous tissues fluctuates by only a small amount.

One can then make the simplifying assumption that the population size is constant.

This is the approach often used to describe the inactivation of tumour suppressor

genes (TSG) [46, 47], which directly regulate the growth and di↵erentiation pathways

of cells [122]. This simple fixed-size model will be the subject of our analysis. The

work in this Chapter has been published in Ref. [133].

Although the birth–death processes that we have investigated in the previous Chap-

ters capture a wide variety of applications, it is often the case that the population is

described by more than one variable. Such scenarios occur when there are multiple

(more than two) types of interacting individuals. This is evident in recent modelling

works of mutation acquisition [34, 46–51], which have focused on the accumulation of

two mutations in a fixed-size population of cells, such that there are three cell types

present in the population. These studies have revealed a more detailed picture of the

initiation of cancer; a homogeneous population harbouring no mutations can move to

a homogeneous state in which all cells carry two mutations without ever visiting a
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Figure 5.1. The population can reach the all-type-2 state via two routes. The first is the
sequential fixation route in which the first mutation takes over the population, and where
this is then followed by the second mutation. The second route does not visit the all-type-1
state. This is the stochastic tunnelling route. The arrows are related to the change of state
only, and imply nothing about the fitness of these states.

homogeneous state in which all cells harbour just one mutation. This phenomenon is

referred to as ‘stochastic tunnelling’, and is illustrated in Fig. 5.1.

The term ‘stochastic tunnelling’ is, however, an unfortunate use of vocabulary. The

‘stochastic’ part indicates that this route to fixation does not occur with certainty.

As indicated in Fig. 5.1 there are two routes to the homogeneous state with two

mutations. The sequential route is still available to the system, but it becomes less

likely in certain parameter regimes. As will be shown below, the ‘stochastic’ route

is actually predicted by the deterministic dynamics, adding further confusion to the

terminology. The process we refer to as ‘tunnelling’ is not limited to the scenario of

‘going under’ a potential barrier as described by quantum-mechanical tunnelling. Here

‘tunnelling’ refers only to overlapping transitions between the homogeneous states.

The fixation of mutations is an important phenomenon if the cells harbouring mu-

tations are deleterious, i.e. less fit than the wild-type un-mutated cells. If cells are

less fit they will generally have low concentrations within the tissue. Then the chance

of a cancerous phenotype emerging (further mutation) is very low. Demographic fluc-

tuations can drive the disadvantageous cells to higher numbers, but these states are

short-lived. If these mutations become fixated in the tissue, however, then the state is

maintained until a further mutation occurs and the chance of a cancerous phenotype

emerging is much greater.

The existing analytical approaches provide accurate approximations for the time
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to fixation of cells harbouring two mutations in a subset of the parameter space; there

are extensive regions which, up to date, have been left unexplored. These are pre-

dominantly situations in which the cell harbouring two mutations is not the most

advantageous in the sequence. Before the double mutant reaches fixation, the popula-

tion has to travel across a fitness hill or move constantly downhill in fitness space. The

dynamics can then become trapped in quasi-equilibria, or metastable states, which are

a consequence of the adverse selection being balanced by the e↵ect of mutation [134].

These long-lived equilibria support a heterogeneous population, and fixation is driven

purely by demographic fluctuations. We address this regime based on ideas from

mathematical physics. Specifically we employ the Wentzel–Kramers–Brillouin (WKB)

method to derive quantitative predictions for fixation times. The WKB method has

been used to describe the escape from metastable states in a variety of systems, in-

cluding predator–prey and epidemic models [54–59]. It has also been used in models of

mutation acquisition to describe the escape over a ‘recombination barrier’ in a sexually

reproducing population [135], and in a model of Muller’s ratchet1 [137].

In this Chapter we will investigate a microscopic model that describes the accumu-

lation and spread of two mutations in a population of cells. This model is described

in Sec. 5.2, along with a brief summary of the previous analytical approaches used to

investigate this model. We then investigate the underlying deterministic dynamics of

this model in Sec. 5.3, where we compute the locations and stability properties of fixed

points. In Sec. 5.4 we classify the stochastic behaviours that can occur. These are,

to some extent, determined by the previous deterministic analysis. By employing the

WKB method in Sec. 5.5, we obtain analytical and semi-analytical approximations for

fixation times in parameter regimes which could not be captured by previous methods,

i.e. regimes in which metastable states exist. We then discuss these results, and the

implications they have on our understanding of stochastic tunnelling, the accumulation

of mutations, and the initiation of cancer.

1The process of repeatedly accumulating disadvantageous mutations [136], named after Hermann
Joseph Muller (1890–1967).
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5.2 Model

We consider the same microscopic model that has been used to describe the inactiva-

tion of a tumour suppressor gene in a pre-cancerous tissue, as presented in Ref. [46].

We first describe the microscopic model, and then comment on the approach of the

previous analyses.

Microscopic model

We consider a well-mixed, finite population of N cells. Each cell can be of one of three

possible types:

(i) Type 0 – a wild-type cell harbouring no mutations;

(ii) Type 1 – a cell harbouring one mutation;

(iii) Type 2 – a cell harbouring two mutations.

Initially, all cells are of type 0, which we refer to as the all-wild-type state. The

evolution of the population is determined by a Moran process in continuous time

[92]. During each elementary time-step of this process, a cell is randomly chosen to

reproduce proportional to its fitness. In the same time-step a cell is randomly removed,

such that the total population size remains constant. The daughter cell can either

inherit its type from the parent, or acquire a single mutation during reproduction.

The relative fitness values of type-0, type-1 and type-2 cells are denoted by r
0

, r
1

and r
2

, respectively. These fitnesses can be thought of as basic reproductive rates.

Without loss of generality, we use r
0

= 1 throughout, such that all fitness values are

relative to the wild-type. This is equivalent to rescaling time such that it is measured in

generations of the wild-type cells. The mutation rates u
1

and u
2

denote the probability

that the daughter of a type-0 cell is of type 1, and the probability that the daughter of

a type-1 cell is of type 2, respectively. We neglect all other combinations of mutations,

i.e. back mutations and multiple mutations during a single reproduction event are not

possible. The assumption of no back-mutation is commonly used in the population
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genetics literature [138]. It means that a cell with i mutations cannot produce an

o↵spring with less than i mutations. The assumption is justifiable since the human

genome is very large, ⇠ 3 ⇥ 109 base pairs, and the probability of mutating a specific

base per cell division is very small, ⇠ 10�10–10�11 [139]. Therefore the chance of

undoing a specific point mutation is vanishingly small. The probability that a second

critical alteration occurs at a di↵erent locus is much higher.

In our model finite populations will eventually reach a state in which all cells have

acquired two mutations. This state is ‘absorbing’, i.e. once this state has been reached,

no further dynamics can occur. There are of course physical processes beyond the

second mutation. In pre-cancerous tissues for example, there will be a finite probability

that cells progress from this state to accumulate further changes. These processes are

not the focus of our work though, and so are not included in the model.

Let us denote the number of type-0, type-1, and type-2 cells by n
0

, n
1

and n
2

,

respectively. The total population, N = n
1

+ n
2

+ n
3

, is constant. We label the

transition rates for the Moran process as T i!j, which is the rate per unit time that a

cell of type i is replaced by a cell of type j. In a process labelled T 0!1, for example, the

state of the population changes from (n
0

, n
1

, n
2

) to state (n
0

� 1, n
1

+ 1, n
2

). There

are six possible changes to the state, labelled by the stoichiometry coe�cient ⌫. The

set of transition rates are

T 0!1 =
n
0

N
⇥ u

1

r
0

n
0

+ (1 � u
2

)r
1

n
1

r
, ⌫ = (�1,+1, 0), (5.1a)

T 0!2 =
n
0

N
⇥ u

2

r
1

n
1

+ r
2

n
2

r
, ⌫ = (�1, 0,+1), (5.1b)

T 1!0 =
n
1

N
⇥ (1 � u

1

)r
0

n
0

r
, ⌫ = (+1,�1, 0), (5.1c)

T 1!2 =
n
1

N
⇥ u

2

r
1

n
1

+ r
2

n
2

r
, ⌫ = (0,�1,+1), (5.1d)

T 2!0 =
n
2

N
⇥ (1 � u

1

)r
0

n
0

r
, ⌫ = (+1, 0,�1), (5.1e)

T 2!1 =
n
2

N
⇥ u

1

r
0

n
0

+ (1 � u
2

)r
1

n
1

r
, ⌫ = (0,+1,�1). (5.1f)

The quantity r = (r
0

n
0

+ r
1

n
1

+ r
2

n
2

)/N is the average fitness of the population. As

an example, the first reaction rate, T 0!1, in Eq. (5.1) can be broken down as follows:

a type-0 cell is randomly chosen to be removed with probability n
0

/N . Meanwhile,
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either a type-0 cell is chosen to reproduce at rate r
0

n
0

/r, and a mutation occurs

(u
1

) during the reproduction to produce a type-1 daughter cell, or a type-1 cell is

chosen to reproduce with rate r
1

n
1

/r without a mutation (1 � u
2

). The rates for

the other processes can be interpreted analogously. We choose a continuous-time

setup, and correspondingly all rates in Eq. (5.1) scale linearly in the population size

N . Simulations are carried out using a standard Gillespie algorithm as described in

Sec. 2.9, and times are measured in generations of the wild-type cell.

The probability, P
n

(t), that the population is in state n = (n
0

, n
1

, n
2

) at time t is

described by the master equation

Ṗ
n

(t) =
X

⌫

⇥

T ⌫
n�⌫Pn�⌫(t) � T ⌫

n

P
n

(t)
⇤

, (5.2)

where T ⌫
n

is the transition rate from Eq. (5.1) that has the corresponding stoichiometric

coe�cient ⌫, evaluated when the population is in state n.

Previous analyses

The majority of analytical investigations of mutation acquisition and stochastic tun-

nelling [34, 46–51] have been limited to considering transitions between homogeneous

states of the population, as illustrated in Fig. 5.1. If we let ⇧
i

(t) be the probabil-

ity to be found in the state in which all cells in the population harbour i mutations

(i = 0, 1, 2), and R
i!j

(j > i) is the rate at which we move from the homogeneous

state with i mutants to the homogeneous state with j mutants, then we can write the

three-state master equation as

⇧̇
0

= �R
0!1

⇧
0

� R
0!2

⇧
0

, (5.3a)

⇧̇
1

= R
0!1

⇧
0

� R
1!2

⇧
1

, (5.3b)

⇧̇
2

= R
0!2

⇧
0

+R
1!2

⇧
1

. (5.3c)

Here R
0!2

is the so-called tunnelling rate, and the quantity ⇧̇
2

(t) describes the proba-

bility density of arrival times at the homogeneous state with two mutations. Although

Eq. (5.3) is easy to solve, the form of the rates R
i!j

as a function of the underlying
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model parameters is non-trivial. It is finding these rates, in particular R
0!2

, that has

been the focus of the above mentioned recent investigations.

In Ref. [46], the transition rates in Eq. (5.3) are computed as

R
0!1

= u
1

N
1 � r

0

/r
1

1 � (r
0

/r
1

)N
, (5.4a)

R
1!2

= u
2

N
1 � r

1

/r
2

1 � (r
1

/r
2

)N
, (5.4b)

R
0!2

= u
1

N

2

4

�(r
0

� r
1

) +
q

(r
0

� r
1

)2 + 2u
2

r
1

(r
0

+ r
1

) 1�r0/r2

1�(r0/r2)
N

r
0

+ r
1

3

5

+

, (5.4c)

where the notation [·]
+

indicates this function cannot have a negative value, i.e. [x]
+

=

0 if x  0 and [x]
+

= x if x > 0. The first rate can be interpreted as follows:

an entirely wild-type population produces a single mutant with rate u
1

N . Ignoring

any mutational e↵ects, this mutant takes over the population with probability (1 �
r
0

/r
1

)/[1 � (r
0

/r
1

)N ], which can be computed from Eq. (2.24). The rate R
1!2

can be

interpreted analogously. The tunnelling rate, R
0!2

, is constructed by considering the

probability that an independent lineage of type-1 cells (which emerges with rate u
1

N)

produces a further mutation which takes over the population. The predictions for the

mean fixation time from this formulation are in very good agreement with simulation

results when r
2

is large, or when the system size is small such that the tunnelling

probability is low [46]. We will show later in this Chapter that this approach does not

accurately capture fixation times when the type-2 cells are deleterious and N is large.

5.3 Deterministic analysis

As a starting point, we will first consider the deterministic limit of Eq. (5.2). This ap-

proach does not capture any of the stochastic e↵ects. However, the types of stochastic

trajectories that can be observed for di↵erent parameter sets are, to some extent, set

by the underlying deterministic dynamics. This approach will highlight the expected

qualitative behaviours of our model.

We have derived the deterministic equations for a master equation of the form (5.2)

in Sec. 2.6, i.e. Eq. (2.65). Writing x
i

= lim
N!1 hn

i

i /N , we have the relation
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Figure 5.2. The concentration simplex, or barycentric coordinate system. The bottom-
left corner corresponds to x

0

= 1. Labels along the left edge indicate the concentration of
type-0 cells. The bottom-right corner corresponds to x

1

= 1 and the labels on the bottom
edge indicate the concentration of type-1 cells. The top corner corresponds to x

2

= 1 and
labels on the right edge indicate the concentration of type-2 cells. For the point shown, the
population consists of 20% type-0 cells, 50% type-1 cells, and 30% type-2 cells.

x
0

+ x
1

+ x
2

= 1, and the average fitness is given by r = r
0

x
0

+ r
1

x
1

+ r
2

x
2

. Inserting

the transition rates (5.1) into Eq. (2.65), the deterministic equations governing the

dynamics of the population can be written as

rẋ
0

=
⇥

(1 � u
1

)r
0

� r
⇤

x
0

, (5.5a)

rẋ
1

= u
1

r
0

x
0

+
⇥

(1 � u
2

)r
1

� r
⇤

x
1

, (5.5b)

rẋ
2

= u
2

r
1

x
1

+ (r
2

� r)x
2

. (5.5c)

Given the relation x
0

+ x
1

+ x
2

= 1, there are only two independent degrees of

freedom. Thus the state-space can be projected onto the two-dimensional plane, which

we will refer to as the concentration simplex. This is illustrated in Fig. 5.2. Each point

in the simplex represents one particular state (1 � x
1

� x
2

, x
1

, x
2

) of the population.

At points in the interior of the simplex all three types of cells are present in the

population (x
i

> 0 for i = 0, 1, 2). Points on the edges of the simplex represent states

in which one of the three types is not present, for example x
0

= 0 for points along the

edge connecting the lower-right corner of the simplex with the upper corner. We will

refer to this as the 1–2 edge in the following, and similarly for the other edges. The

three corners of the simplex represent the homogeneous states, i.e. x
0

= 1 (lower left
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corner), x
1

= 1 (lower right) and x
2

= 1 (upper corner).

Stability analysis

The deterministic equations (5.5) can permit fixed points, that is a point x⇤ at which

ẋ
i

= 0 for all i = 0, 1, 2. The most obvious of these is at (0, 0, 1), which corresponds

to the absorbing state. The equations can have a further zero, one, or two non-trivial

fixed points, depending on the values of the fitness parameters and the mutation rates.

These additional fixed points correspond to points at which the ‘push’ of mutation

balances the adverse e↵ect of selection [49, 134]. The stability of the fixed points, as

described in Sec. 2.6, is determined by the eigenvalues of the Jacobian of Eqs. (5.5). We

define the two-dimensional Jacobian in terms of x
1

and x
2

, and impose x
0

= 1�x
1

�x
2

.

The Jacobian is given by

J(x
1

, x
2

) =

0

@

@ẋ1
@x1

@ẋ1
@x2

@ẋ2
@x1

@ẋ2
@x2

1

A . (5.6)

Along the 1–2 boundary of the concentration simplex (x
0

= 0) we have x
2

= 1�x
1

.

A fixed point of Eqs. (5.5) can then be found at

x⇤
1

=
(1 � u

2

)r
1

� r
2

r
1

� r
2

, (5.7a)

x⇤
2

=
u
2

r
1

r
1

� r
2

. (5.7b)

The parameter range in which this fixed point exists is determined by the condition

0 < x⇤
1

< 1, which we can write as (1 � u
2

)r
1

> r
2

. The fixed point on the 1–2 edge

therefore exists when type-1 cells have a fitness advantage over type-2 cells. The factor

1� u
2

accounts for the e↵ect of the mutation ‘push’. Increasing this fitness advantage

moves the fixed point towards x
1

= 1, or equivalently away from the absorbing state

at x
1

= 0. For vanishing mutation rate u
2

, the fixed point approaches the x
1

= 1

state. Evaluating the Jacobian in Eq. (5.6) at the fixed point (5.7), we find that the

determinant and trace satisfy

det[J(x⇤
1

, 1 � x⇤
1

)] =
[(1 � u

2

)r
1

� r
2

][(1 � u
2

)r
1

� (1 � u
1

)r
0

]

[(1 � u
2

)r
1

]2
, (5.8a)

Tr[J(x⇤
1

, 1 � x⇤
1

)] =
(1 � u

1

)r
0

+ r
2

� 2(1 � u
2

)r
1

(1 � u
2

)r
1

, (5.8b)
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Figure 5.3. Boundary fixed points occur when (1�u

2

)r
1

> r

2

(regions I and II; mutation–
selection balance between types 1 and 2). Stable interior fixed points occur when (1�u

1

)r
0

>

(1 � u

2

)r
1

and (1 � u

1

)r
0

> r

2

(regions II and III; mutation–selection balance between all
three types). No additional fixed points are found in regions IV and V (beneficial type-2
mutation). In all regions, the point x

2

= 1 is an absorbing state and is therefore a fixed
point as well.

and from this the discriminant is always positive such that the eigenvalues of J are

real. Using the classification scheme in Fig. 2.4, we can characterise this boundary

fixed point in the following way:

8

>

>

>

<

>

>

>

:

Fixed point exists if (1 � u
2

)r
1

> r
2

,

and is stable if (1 � u
1

)r
0

< (1 � u
2

)r
1

,

or is a saddle point if (1 � u
1

)r
0

> (1 � u
2

)r
1

.

9

>

>

>

=

>

>

>

;

(5.9)

These inequalities contain regions I and II of the phase diagram shown in Fig. 5.3.

The stable fixed point can be seen in Fig. 5.4(a), and the saddle point can be seen in

Fig. 5.4(b).

A further fixed point of Eqs. (5.5), this time with x⇤
0

> 0, can be found at

x⇤
1

=
[(1 � u

1

)r
0

� r
2

]u
1

r
0

u
2

r
1

(r
0

� r
2

) + (r
0

� r
1

)[(1 � u
1

)r
0

� r
2

]
, (5.10a)
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r
0

r
1
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r
1

(r
0

� r
2

) + (r
0

� r
1

)[(1 � u
1

)r
0
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2

]
, (5.10b)

which exists if the model parameters satisfy (1�u
1

)r
0

> (1�u
2

)r
1

and (1�u
1

)r
0

> r
2

.

If this is the case we find det[J] > 0 and Tr[J] < 0, and the discriminant is always
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Figure 5.4. The streamlines of Eqs. (5.5) in parameter regions which permit non-trivial
fixed points, which are regions I, II and III of Fig. 5.3. The thick line is the deterministic flow
from the all-wild-type initial condition. Solid circles indicate stable fixed points, and the open
circle for region II corresponds to the saddle point that is stable along the 1–2 boundary. The
fitness landscape that generates each type of behaviour is shown below each simplex. Region
II corresponds to the case of Muller’s ratchet, where increasingly deleterious mutations are
accumulated [136]. In these illustrations the mutation rates are u

1

= u

2

= 10�2.
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Figure 5.5. The streamlines of Eqs. (5.5) in parameter regions where x

2

= 1 is the only fixed
point, which are regions VI and V of Fig. 5.3. The thick line is the deterministic flow from the
all-wild-type initial condition. The fitness landscape that generates each type of behaviour
is shown below each simplex. Region IV is the classic valley crossing scenario [135,140–143].
In these illustrations the mutation rates are u

1

= u

2

= 10�2.
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positive. Hence, according to Fig. 2.4 this fixed point is always stable. This is the case

in regions II and III in Fig. 5.3, i.e. when cells harbouring one and two mutations are

less fit than the wild-type. The fixed point can be seen in Figs. 5.4(b) and (c). The

fixed point moves closer to x
0

= 1 when the fitness advantage of the wild-type cells

is increased (i.e. by lowering the fitness of type-1 and type-2 cells). Decreasing the

mutation rates also moves the fixed point closer to x
0

= 1.

In the remaining regions of parameter space, namely regions IV and V in Fig. 5.3,

there are no non-trivial fixed points. As seen in Figs. 5.5(a) and (b), the flow from the

all-wild-type state is directly towards the all-type-2 state. Returning to the discussion

of stochastic tunneling, we can see that the deterministic trajectories in Figs. 5.5(a)

and (b) do not pass through the all-type-1 state. Hence the deterministic dynamics

predicts the stochastic tunnelling route.

5.4 Types of stochastic behaviour

The deterministic equations (5.5) can provide some intuition into the qualitative

stochastic behaviours that can occur. We now analyse this behaviour in each region

of parameter space outlined in Fig. 5.3.

Region I

In region I, the deterministic dynamics flows towards the stable fixed point on the

1–2 edge of the concentration simplex (x
0

= 0). The type-0 cells have the lowest

fitness, and are deterministically lost by selection. The fixed point is a consequence

of the mutation–selection balance between type-1 and type-2 cells [134]; selection

acts to reduce the number of type-1 cells, but mutation from cells of type 1 acts

to increase their number. Writing r
2

= (1 � s)r
1

, the existence condition for the

equilibrium, (1 � u
2

)r
1

> r
2

, reduces to u
2

< s. It is a well-known result from

population genetics that this condition prevents the deterministic loss of the type-1

cells [64, 134]. The deterministic system gets stuck at this fixed point, but a finite
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Figure 5.6. (a) Thin line shows a single stochastic trajectory in the concentration simplex
for parameters in region I. The trajectory closely follows the deterministic trajectory and
type-0 cells become extinct. (b) The individual components of the same trajectory as a
function of time. Type-0 cells reach extinction very quickly, and the population composition
fluctuates about the fixed point, indicated by dashed lines. Eventually type-1 cells are lost
and type-2 cells reach fixation. A moving average over a time window of 200 generations has
been taken to improve clarity. Parameters are as in Fig. 5.4(a), i.e. r

0

= 1.00, r

1

= 1.05,
r

2

= 1.00, u

1

= u

2

= 10�2, and N = 300.

population will eventually reach the all-type-2 state.

At large but finite population sizes, the stochastic dynamics are expected to approx-

imately follow the deterministic path such that type-0 cells quickly become extinct.

This is shown in Fig. 5.6. The lack of backwards mutations means the population

cannot depart from the 1–2 edge and the problem reduces to one degree of free-

dom. The mutation–selection balance maintains the heterogeneous population state

of type-1 and type-2 cells, which fluctuates about the fixed point location as shown

in Fig. 5.6(b). The intrinsic noise then has to drive the system from this metastable

state into the absorbing all-type-2 state against the direction of selection. Fixation

times are expected to grow exponentially with the population size in-line with existing

results [63, 105,135].

Region II

In region II, the deterministic flow from the all-wild-type state is towards a stable fixed

point in the interior of the simplex. This point corresponds to the mutation–selection

balance point of all three cell types. There is a second fixed point located on the 1–2
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Figure 5.7. (a) Thin line shows a single stochastic trajectory in the concentration simplex
for parameters in region II. The population fluctuates about the interior stable fixed point
before type-0 cells become extinct. (b) The individual components of the same trajectory
as a function of time. The population quickly reaches the metastable state and fluctuates
about the fixed point location, indicated by dashed lines. Eventually type-0 cells are lost at
t ⇡ 5500. After this the population of type-1 and type-2 cells fluctuates about the boundary
fixed point location, before type-1 cells are lost and type-2 cells reach fixation. A moving
average over a time window of 200 generations has been taken to improve clarity. Parameters
are as in Fig. 5.4(b), i.e. r

0

= 1.00, r

1

= 0.98, r

2

= 0.95, u

1

= u

2

= 10�2, and N = 300.

edge, which corresponds to mutation–selection balance between types 1 and 2 in the

absence of type-0 cells (analogous to region I). As type-0 cells have the highest fitness

in this regime, selection is directed away from the 1–2 edge. Thus the fixed point on

this edge is a saddle.

As before the stochastic dynamics in finite populations will reach the all-type-2

state eventually. The population will closely follow the deterministic trajectory before

reaching the metastable state about the stable interior fixed point. This can be seen

in Fig. 5.7(a). Here the mutation–selection balance maintains the heterogeneous state

with all three species present. The population fluctuates about this fixed point as

shown in Fig. 5.7(b) until it eventually overcomes the adverse selection and escapes.

There are two possibilities for the subsequent behaviour:

(i) Type-0 cells become extinct and the population settles into the metastable state

on the 1–2 edge. Intrinsic fluctuations enable the population to overcome the

adverse selection along the edge and eventually reach the absorbing all-type-2

state. This corresponds to sequential extinction, first of type-0 cells, then of type-

1 cells. This process is equivalent to a minimal model of Muller’s ratchet [136],



130 CHAPTER 5. METASTABLE STATES IN CANCER INITIATION

in which the most advantageous phenotypes are sequentially lost. A trajectory

of this type is illustrated in Fig. 5.7(b).

(ii) Cells of type 0 and type 1 can, in principle, go extinct (almost) simultaneously.

The trajectory of the system then hits the 1–2 edge close to the all-type-2 corner

of the simplex. It does not become trapped in the metastable state located on

the 1–2 edge.

We observe that this second path to extinction is realised only very rarely, which is

in agreement with similar studies of predator–prey dynamics [54]. Hence our further

analysis will only consider the sequential fixation path.

Region III

In region III the deterministic dynamics has a single stable fixed point in the interior

of the concentration simplex. This point again corresponds to the mutation–selection

balance point of all three cell types. Large, but finite populations will behave as dis-

cussed in case (ii) for region II: They will initially become trapped in the metastable

state about the mutation–selection balance point, before intrinsic fluctuations eventu-

ally drive the system to the absorbing all-2 state. In region III, type-0 and type-1 cells

go extinct at essentially the same time. The type-0 cells can reach extinction first,

and then type-1 cells quickly follow as selection along the 1–2 edge is directed towards

the absorbing state [(1 � u
2

)r
1

< r
2

]. This is illustrated in Fig. 5.8.

Regions IV and V

In a subset of the parameter space, shown as regions IV and V in Fig. 5.3, the de-

terministic flow from the all-wild-type state is directly to the absorbing all-2 state, as

shown in Fig. 5.5. For such model parameters we expect that fixation in finite pop-

ulations will be quick (relative to fixation times in regions with metastable states) as

type-2 cells are favoured by selection (and mutation). These scenarios agree with the

theory of natural selection, in which the populations fitness increases over time [144].
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Figure 5.8. (a) Thin line shows a single stochastic trajectory in the concentration simplex
for parameters in region III. The population fluctuates about the interior stable fixed point
before type-2 cells eventually fixate. (b) The individual components of the same trajectory
as a function of time. The population quickly reaches the metastable state and fluctuates
about the fixed point location, indicated by dashed lines. Eventually type-0 and type-1 cells
are lost almost simultaneously. A moving average over a time window of 200 generations
has been taken to improve clarity. Parameters are as in Fig. 5.4(c), i.e. r

0

= 1.00, r

1

= 0.95,
r

2

= 0.98, u

1

= u

2

= 10�2, and N = 300.

In region IV this is achieved by crossing a fitness valley, and in region V it is achieved

by sequentially selecting the most advantageous phenotype.

Summary of previous literature

Fig. 5.9 illustrates in which parameter regimes fixation has previously been studied in

the stochastic tunnelling literature. These existing studies almost exclusively focus on

regions IV and V, i.e. cases in which fixation is driven not primarily by demographic

noise, but by the underlying deterministic flow. As mentioned above fixation is typi-

cally fast in regions IV and V. Based on similar studies in evolutionary game theory

one would expect the fixation time to grow logarithmically with the population size,

⌧ ⇠ lnN [63]. The regions containing non-trivial fixed points are largely unexplored

by previous investigations. Fixation is controlled by stochastic e↵ects so that fixation

times are large and broadly distributed. As we will discuss below, fixation times grow

exponentially with the population size in such cases. This is perfectly in-line with the

findings of Ref. [51], who point out that fixation in these regions takes a very long
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Figure 5.9. The coloured area roughly corresponds to the regions in which the probability of
fixation at a given time has been successfully predicted in Ref. [51]. The southwest–northeast
striped region, with r

1

deleterious or slightly advantageous, and r

2

very advantageous, is the
approximate region of interest of Refs. [34, 47, 48]. These studies focused on the time to
emergence of a single type-2 cell. The northwest–southeast striped region, with r

1

neutral
or deleterious, and r

2

advantageous, is approximately the region of interest of Refs. [46,50].
These studies were concerned with computing fixation times of the advantageous type-2 cells
and rely on the assumption that the number of type-1 cells is small. Finally, the horizontal
striped region approximately corresponds to the literature of fitness valley crossings, notably
Refs. [135,140–143]. These studies are concerned with 1/N < r

2

� r

0

⌧ 1.

time. E�cient measurements of fixation time in simulations are hence di�cult. Meth-

ods which require the numerical solutions of, for example, the backward Fokker-Planck

equation or a backward master equation reach their limits here as well [51]. This is be-

cause forward integration of these equations has to be carried out for increasingly long

periods of time. The contribution of this work is to analyse precisely these previously

inaccessible cases.

5.5 WKB analysis

In this section we compute the fixation properties of systems in which the underlying

deterministic dynamics has one or more attracting fixed points away from the absorb-

ing all-type-2 state. For this analysis we use the celebrated WKB method. We here

present this method as an ‘o↵-the-shelf approach’, using existing WKB studies to guide

our analysis. In Chapter 6 we further discuss the WKB method, and in particular its
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mathematical origins and relation to other fields, such as large deviations theory.

To proceed with the analysis of our model we need to make the following simplifying

assumptions, which are justified by the previous deterministic analysis:

(i) We assume that the population first settles into a distribution about the fixed

point, as shown in Figs. 5.6, 5.7 and 5.8.

(ii) We assume that the population will ‘leak’ into the absorbing state on a very long

timescale from this distribution. With this assumption we can also say that the

time taken for the population to reach the metastable state is negligible when

compared to the escape time. This is most clearly seen in Fig. 5.6(b).

With these assumptions we can compute the distribution about the fixed points, and

the escape rate from these states, from the master equation (5.2). These assumptions

(and hence the subsequent analysis) are only valid when the selective pressure is greater

than the e↵ect of noise, such that the metastable states are long-lived. For this reason,

the approach described here is only valid for large values of N which satisfy this

condition.2

Mathematically we formulate the problem as follows: let ⇡
n

be the quasi-stationary

distribution (QSD), which is independent of time. This is the distribution that, prior

to the system reaching the absorbing state n
abs

, we would observe for the state of the

population. This distribution satisfies
P

n 6=nabs
⇡
n

= 1. We expect that it is peaked

about the stable fixed points of the underlying deterministic dynamics. The mean time

taken to escape from this metastable state, ⌧ , is much greater than the time taken to

initially reach the metastable state t
r

, i.e. ⌧ � t
r

. Provided this condition holds, we

can assume that after a short time the probability to find the population in state n is

given by

P
n 6=nabs

(t � t
r

) ' ⇡
n

e�t/⌧ , P
nabs

(t � t
r

) ' 1 � e�t/⌧ . (5.11)

The exponential decay factor, e�t/⌧ , describes the ‘leaking’ process from the metastable

2The minimum value of N for which our analysis is valid is dependent on the remaining model
parameters, but comparisons with simulation results in the next section show it is accurate for
N & 100.
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state into the absorbing state. The second equation follows from the normalisation of

P
n

(t).

To find the mean fixation time of the type-2 cells, we substitute Eq. (5.11) into the

master equation (5.2) to obtain the quasi-stationary master equation (QSME)

� 1

⌧
⇡
n 6=nabs

=
X

⌫

⇥

T ⌫
n�⌫⇡n�⌫ � T ⌫

n

⇡
n

⇤

. (5.12)

For n = n
abs

(the absorbing state) we have

1

⌧
=

X

⌫

T ⌫
nabs�⌫⇡nabs�⌫

= T 1!2

(0,1,N�1)

⇡
(0,1,N�1)

+ T 0!2

(1,0,N�1)

⇡
(1,0,N�1)

, (5.13)

where we have used T ⌫
nabs

= 0 for all ⌫. Hence if we find the QSD, ⇡
n

, by solving the

QSME (5.12), we can determine the mean fixation time, ⌧ , and the probability to have

reached fixation by time t, P
nabs

(t) = 1� e�t/⌧ . By separating variables in Eq. (5.11),

we have reduced the complexity of the master equation (5.2); time does not feature in

the QSME (5.12).

We now change variables from n to x = n/N , and we will interpret x as a continuous

variable. This approximation is valid as we have already stated that we require N to

be large. The continuous version of the QSD is the probability density  (x) = N⇡
Nx

.

We employ the WKB ansatz [145] to represent the QSD as

N⇡
Nx

=  (x) = C exp
⇥�NS

0

(x) � S
1

(x) + O(N�1)
⇤

, (5.14)

where S
�

(x) = O (1) for all � � 0 [52], and we have introduced C as a normalisation

constant. The discussion of the origin of this ansatz follows in Chapter 6. To find

the QSD, we substitute the ansatz into the QSME (5.12), and then follow the existing

approaches for solving similar problems (see Ref. [52], for example) by expanding the

resulting equation in powers of N�1.

Further analytical progress can be made if the QSME has only one variable. This

is relevant in regions I and II of our model, where the population must escape from a

metastable state on the 1–2 edge of the concentration simplex. Escape from an interior

metastable state can also be studied using the WKB approach. However, the QSME
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then retains two degrees of freedom, and explicit expressions for the QSD and escape

time cannot be obtained. In this scenario we must resort to numerical methods. In

the following we describe the WKB approach for the three regions of parameter space

that contain additional fixed point separately.

Region I

We first consider the case in which there exists a single additional fixed point of the

deterministic dynamics, which is located on the 1–2 boundary of the concentration

simplex. In this scenario type-0 cells become extinct very quickly and the population

settles into the quasi-stationary distribution along this edge. As the population cannot

depart from the 1–2 boundary, the system reduces to one degree of freedom. We

parametrise the system in terms of the concentration of type-1 cells, x
1

. We then have

x
2

= 1� x
1

, and x
1

= 0 is the absorbing state (in which all cells are of type 2). Along

the 1–2 boundary there are only two reactions from Eq. (5.1) which have non-zero

rate; T 1!2 and T 2!1. We express these as the intensive quantities

f
+

(x
1

) =
T 2!1

Nx1

N
= (1 � x

1

) ⇥ (1 � u
2

)r
1

x
1

r
1

x
1

+ r
2

(1 � x
1

)
, (5.15a)

f�(x1

) =
T 1!2

Nx1

N
= x

1

⇥ u
2

r
1

x
1

+ r
2

(1 � x
1

)

r
1

x
1

+ r
2

(1 � x
1

)
. (5.15b)
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The phase portrait in Fig. 5.10, as described in Sec. 2.6, highlights the location of

the fixed point and the direction of selection away from the absorbing boundary at

x
1

= 0. In the figure we have used ẋ
1

= f
+

(x
1

) � f�(x1

). This is exactly Eq. (5.5b)

with x
0

= 0 and x
2

= 1 � x
1

.

The aim of this subsection is to compute an explicit expression for the mean escape

time from the metastable state on the 1–2 boundary. The main steps of this calculation

are:

(i) Find an expression for the QSD on the boundary. This is achieved by substituting

the WKB ansatz (5.14) into the QSME (5.12) and solving the equations in

descending powers of N .

(ii) Close to the x
1

= 0 boundary we must consider the flux to the absorbing state,

and so we construct a boundary-layer solution in this region. We consider a

Taylor expansion of Eq. (5.12) about x
1

= 0 without imposing the WKB ansatz

as the solution.

(iii) The two solutions described above are matched within the boundary-layer to

provide an accurate approximation for the mean escape time, ⌧ .

Once this analysis is complete, we compare the predictions with the results of

stochastic simulations of the original model.

(i) Calculating the quasi-stationary distribution

We will now compute the approximate distribution about the metastable state. On

the boundary the QSME (5.12) is

� 1

N⌧
 (x

1

) =
X

⌫=±1

h

f
⌫

⇣

x
1

� ⌫

N

⌘

 
⇣

x
1

� ⌫

N

⌘

� f
⌫

(x
1

) (x
1

)
i

, (5.16)
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which we can Taylor expand about x
1

. We first replace  (x
1

) by the ansatz (5.14) and

perform the expansion

 
⇣

x
1

� ⌫

N

⌘

= C exp
h

�NS
0

⇣

x
1

� ⌫

N

⌘

� S
1

⇣

x
1

� ⌫

N

⌘i

⇡ C exp



�N

✓

S
0

(x
1

) � ⌫S 0
0

(x
1

)

N
+
⌫2S 00

0

(x
1

)

2N2

◆

�
✓

S
1

(x
1

) � ⌫S 0
1

(x
1

)

N

◆�

=  (x
1

) exp [⌫S 0
0

(x
1

)] exp



� 1

N

✓

⌫2S 00
0

(x
1

)

2
� ⌫S 0

1

(x
1

)

◆�

⇡  (x
1

) exp [⌫S 0
0

(x
1

)]



1 + ⌫
S 0
1

(x
1

)

N
� ⌫2S 00

0

(x
1

)

2N

�

. (5.17)

We have here used S 0
�

(x
1

) to represent di↵erentiation with respect to x
1

, and we have

assumed that the S
�

(x
1

) are di↵erentiable. The expansion of the transition rates is

simply f
⌫

(x
1

� ⌫/N) ⇡ f
⌫

(x
1

)� ⌫f 0
⌫

(x
1

)/N . Eq. (5.16) can hence by approximated by

0 =
X

⌫=±1

f
⌫

(x
1

)
h

e⌫S
0
0(x1) � 1

i

+
1

N

X

⌫=±1

e⌫S
0
0(x1)



⌫f
⌫

(x
1

)S 0
1

(x
1

) � ⌫2f
⌫

(x
1

)S 00
0

(x
1

)

2
� ⌫f 0

⌫

(x
1

)

�

+O �

N�2

�

, (5.18)

where we have ignored the term O�

(N⌧)�1

�

. We will soon confirm that this term is

much less than O (N�2) as ⌧ scales as eN .

The leading-order terms in the system size of Eq. (5.18) satisfy

f
+

(x
1

) (ep � 1) + f�(x1

)
�

e�p � 1
�

= 0, (5.19)

where we have introduced p = S 0
0

(x
1

). Eq. (5.19) can be expressed as a quadratic

equation for ep, from which we find two values of p. One of these is p = 0, and the

other is

p(x
1

) = ln



f�(x1

)

f
+

(x
1

)

�

. (5.20)

We can then integrate this second expression to recover S
0

(x
1

), which we define as

S
0

(x
1

) =

Z

x1

x

⇤
1

ln



f�(q)

f
+

(q)

�

dq. (5.21)

The choice of integration constant is arbitrary as it will be absorbed into the normal-

isation coe�cient, C. Here we chose the constant such that S
0

(x⇤
1

) = 0, where x⇤
1

is
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the location of the fixed point as described in Eq. (5.7). Substituting in the transition

rates from Eq. (5.15), we obtain

S
0

(x
1

) =



(1 � q) ln
⇥

(1 � u
2

)r
1

(1 � q)
⇤� u

2

r
1

q + r
2

(1 � q)

r
2

� u
2

r
1

ln
⇥

u
2

r
1

q + r
2

(1 � q)
⇤

�

q=x1

q=x

⇤
1

.

(5.22)

This function is well-behaved at all points 0  x
1

 1, as shown in Fig. 5.11(a) below.

We find that S
0

(x⇤
1

) is a minimum of S
0

(x
1

), such that the leading-order contribution

(in the system size) to the QSD,

 (x
1

) = C exp
⇥�NS

0

(x
1

)
⇤

, (5.23)

is peaked about the fixed point x⇤
1

. To determine the normalisation coe�cient, C, we

can expand the QSD about the fixed point

 (x
1

) ⇡ C exp



�N

2
(x

1

� x⇤
1

)2S 00
0

(x⇤
1

)

�

, (5.24)

where we have used S
0

(x⇤
1

) = S 0
0

(x⇤
1

) = 0. Applying the normalisation condition
R

1

0

 (q) dq = 1 we find that

C ⇡
r

NS 00
0

(x⇤
1

)

2⇡
, (5.25)

where we have assumed that
R

1

0

 (q) dq ⇡ R1
�1  (q) dq, or equivalently that  (x

1

) is

sharply peaked about x⇤
1

.

The next-leading-order terms in the system size of Eq. (5.18) satisfy

X

⌫=±1

e⌫p(x1)



⌫f
⌫

(x
1

)S 0
1

(x
1

) � ⌫2f
⌫

(x
1

)p0(x
1

)

2
� ⌫f 0

⌫

(x
1

)

�

= 0. (5.26)

Substituting Eq. (5.20) into this expression, it can be shown that S 0
1

(x
1

) satisfies

S 0
1

(x
1

) =
1

2



f 0
+

(x
1

)

f
+

(x
1

)
+

f 0
�(x1

)

f�(x1

)

�

. (5.27)

Integrating this equation gives

S
1

(x
1

) =



1

2
ln
⇥

f
+

(q)f�(q)
⇤

�

q=x1

q=x

⇤
1

, (5.28)

where again we have chosen the arbitrary constant such that S
1

(x⇤
1

) = 0. Substituting

in the transition rates from Eq. (5.15), we find

S
1

(x
1

) =

"

1

2
ln

 

(1 � u
2

)r
1

q(1 � q) ⇥ ⇥

u
2

r
1

q2 + r
2

q(1 � q)
⇤

⇥

r
1

q + r
2

(1 � q)
⇤

2

!#

q=x1

q=x

⇤
1

. (5.29)
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This function diverges at x
1

= 0 and x
1

= 1, as shown in Fig. 5.11(b). We can ignore

the divergence at x
1

= 1 as this state is not of interest. The divergence at x
1

= 0

cannot be ignored if we want to compute the time to reach this absorbing state. To

overcome this we introduce the function

�(x
1

) = S
1

(x
1

) � ln(x
1

), (5.30)

which is well-behaved at x
1

= 0, as shown in Fig. 5.11(b). With this we can express

the QSD as

⇡
Nx1 =

 (x
1

)

N
=

C

Nx
1

exp
⇥�NS

0

(x
1

) � �(x
1

)
⇤

, (5.31)

which is illustrated in Fig. 5.12 below. The x�1

1

divergence has now been isolated

outside of the exponent, which will prove to be necessary when we construct the

boundary-layer solution below.

We can attempt to determine the mean fixation time, ⌧ . As an initial guess we can

simply rearrange Eq. (5.13) to write

⌧ =
1

f�(1/N) (1/N)

=

✓

1

N

u
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r
1
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(1 � 1/N)

r
1

/N + r
2

(1 � 1/N)
⇥ C

1/N
exp [�NS
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NS 00
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(x⇤
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)
exp [NS

0

(1/N) + �(1/N)] . (5.32)
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However we expect the QSD (5.31) to be a less accurate description of the true distri-

bution as the distance from the fixed point increases. This is because we have neglected

any flux into the absorbing state. Instead we can construct a boundary-layer solution

close to x
1

= 0.

(ii) Boundary-layer solution

The boundary-layer solution is calculated by expanding the QSME (5.12) [and (5.13)]

about x
1

= 0 without imposing a specific form for the QSD (i.e. we do not use the

WKB ansatz). We return to the discrete coordinates n
1

= Nx
1

and ⇡
n1 =  (n

1

/N)/N .

For n
1

= 0 we have

1

⌧
= Nf�

✓

1

N

◆

⇡
1

⇡ N

✓

f�(0) +
1

N
f 0
�(0)

◆

⇡
1

= f 0
�(0)⇡1

) ⇡
1

⇡ 1

⌧ f 0
�(0)

. (5.33)

For 1  n
1

⌧ N we have

0 =
X
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f 0
⌫
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� ⌫)⇡
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� n
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or equivalently

✓
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where ✓
n1 = n

1

⇡
n1 . This recursive system can be solved to arrive at
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This is the boundary-layer solution of the QSME (5.12) for dynamics constrained to

the 1–2 edge of the concentration simplex. This is shown in Fig. 5.12 below. The

derivatives of the transition rates (5.15) at x
1

= 0 are

f 0
+

(0) =
(1 � u

2

)r
1

r
2

> 1, (5.37a)

f 0
�(0) = 1, (5.37b)
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where the inequality arises from the existence condition of the fixed point, Eq. (5.9).

Now using [f 0
+

(0)]n1 � 1 for suitably large n
1

, i.e. at the edge of the boundary layer,

as well as Eq. (5.33), we can approximate the solution (5.36) as

⇡
n1 ⇡ [f 0

+

(0)]n1

[f 0
+

(0) � 1]

1

⌧ n
1

. (5.38)

We now want to match Eq. (5.38) with the WKB solution (5.31) to determine an

accurate value of ⌧ .

(iii) Matching WKB and boundary-layer solutions

By expanding the WKB solution (5.31) about x
1

= 0, we recover

⇡(Nx
1

) ⇡ C

Nx
1

exp [�NS
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(0) � Nx
1
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(0) � �(0)]

=
C

Nx
1

exp [�Nx
1

p(0)] exp [�NS
0

(0) � �(0)] . (5.39)

Using Eq. (5.20), we can evaluate exp[�p(0)] as

exp[�p(0)] = lim
q!0

f
+

(q)

f�(q)
= lim

q!0

f 0
+

(q)

f 0
�(q)

= f 0
+

(0). (5.40)

Likewise, the function exp[��(0)] can be evaluated as

exp[��(0)] = lim
q!0



f
+

(q)f�(q)

q2

��1/2

⇥ [f
+

(x⇤
1

)f�(x
⇤
1

)]1/2

= lim
q!0



f 00
+

(q)f�(q) + 2f 0
+

(q)f 0
�(q) + f

+

(q)f 00
�(q)

2

��1/2

⇥ f
+

(x⇤
1

)

=
1

p

f 0
+

(0)
⇥ f

+

(x⇤
1

), (5.41)

where we have used f
+

(x⇤
1

) = f�(x⇤
1

) and f
+

(0) = f�(0) = 0. Hence we can write

Eq. (5.39) as

⇡(Nx
1

) ⇡ C

Nx
1

⇥

f 0
+

(0)
⇤

Nx1 f
+

(x⇤
1

)
p

f 0
+

(0)
exp [�NS

0

(0)] . (5.42)

We can now equate this with Eq. (5.38) for x
1

> 0, and from this we obtain the mean

fixation time

⌧ =
1

C

p

f 0
+

(0)

f
+

(x⇤
1

)[f 0
+

(0) � 1]
exp [NS

0

(0)] . (5.43)
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Inserting the explicit expressions for S
0

(0), the transition rates, and the normalisation

coe�cient, we can write the escape time from the metastable on the 1–2 boundary as

⌧ =

r

2⇡r
1

r
2

Nu
2

(1 � u
2

)(r
1

� r
2

)

[(1 � u
2

)r
1

� r
2

]2

⇥ exp

⇢

N



u
2

r
1

r
2

� u
2

r
1

ln



u
2

(1 � u
2

)r2
1

r
1

� r
2

�

+ ln
⇥

(1 � u
2

)r
1

⇤� r
2

r
2

� u
2

r
1

ln[r
2

]

��

.

(5.44)

As expected, the mean escape time increases exponentially with the system size, but

the dependence on the remaining model parameters is very messy.

Results

We can now compare these results with probability distributions and fixation times

obtained from Gillespie simulations of the microscopic model described in Sec. 5.2. In

Fig. 5.12, we show our theoretical approximation for the distribution of the concen-

tration of type-1 cells, which is given by

P
[0,Nx1,N(1�x1)](t) =

C

Nx
1

exp [�NS
0

(x
1

) � �(x
1

)] ⇥ exp(�t/⌧) for x
1

> 0, (5.45a)

P
(0,0,N)

(t) = P
nabs

(t) = 1 � exp(�t/⌧) for x
1

= 0. (5.45b)

Initially this distribution will be an inaccurate representation of the true distribution

as the type-0 cells will not yet have become extinct, but it will become increasingly

accurate as time progresses. This approximation is compared with the distribution

obtained from simulations in Fig. 5.12. Specifically, we measure the probability to

observe a fraction x
1

of type-1 cells at a given time t (independent of whether type-

0 cells have become extinct or not). The data in the figure reveals good agreement

between theory and simulation data away from the region close to x
1

= 0. There

is also good agreement between Eq. (5.45b) and the probability to have reached the

absorbing state by time t measured from the simulations.

Close to the absorbing state x
1

= 0, the boundary-layer approximation for the

distribution is given by

P
[0,Nx1,N(1�x1)](t) =

1 � ⇥

f 0
+

(0)
⇤

Nx1

1 � f 0
+

(0)

1

⌧Nx
1

exp(�t/⌧) for 1/N < x
1

⌧ 1. (5.46)
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Figure 5.12. The measured distribution of concentrations of type-1 cells, x

1

, at given
times (symbols) in region I of parameter space. These are obtained from an ensemble of 105

Gillespie simulations of the microscopic model. Inset is the same data with a logarithmic
vertical axis. We show the WKB approximation (5.45) (solid lines; filled bars for x

1

= 0),
and the boundary-layer solution (5.46) (dashed lines), which are in good agreement with
simulation results in their respective regimes. The distributions away from x

1

= 0 have been
re-scaled by a factor 50 for optical convenience. The arrow indicates the location of the
deterministic fixed point, given by Eq. (5.7). Parameters are r

0

= 1.0, r

1

= 1.05, r

2

= 1.0,
u

1

= u

2

= 10�2, and N = 200.

This shows improved agreement with simulation results close to x
1

= 0 when compared

to WKB solution (5.45). This is emphasised in the inset logarithmic plot of Fig. 5.12.

Results for the mean fixation time in region I are shown in Fig. 5.13(a). In

Fig. 5.13(b) we plot the probability that type-2 cells have reached fixation by time

t⇤ = 3 ⇥ 103 (including fixation earlier than that), and compare this with the predic-

tion of Eq. (5.45b). If a cellular generation lasts for one day, then this time is O (10)

years, which is the same length of time that appears in multiple studies of mutation

acquisition [29,127]. The mean fixation times increase exponentially with the fitness of

type-1 cells, r
1

. This is a consequence of the increasing height of the selection ‘barrier’

which must be overcome for type-2 cells to reach fixation. Also, increasing r
1

pushes

the boundary fixed point towards the all-type-1 state, which results in a further in-

crease in fixation time (or decrease in probability of fixation by time t⇤). If the fixed

point approaches the all-type-1 state, the probability of the population reaching this

corner of the simplex due to demographic fluctuations increases. Thus increasing r
1

decreases the probability of stochastic tunnelling occurring. Increasing the fitness of
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Figure 5.13. (a) Mean fixation time of type-2 cells in region I. Symbols correspond to
mean fixation times from simulations of the model (averaged over an ensemble of 2–5 ⇥ 103

samples) initiated in the all-wild-type state. Shape of symbol indicates fitness of type-2 cells
(see legend); filled symbols are for u

1

= u

2

= 10�2, empty symbols are for u

1

= u

2

= 10�3.
Solid lines (high mutation) and dashed lines (low mutation) are the WKB prediction for
fixation time, Eq. (5.44). The approximation breaks down when (1 � u

2

)r
1

' r

2

, which is
when the fixed point approaches the absorbing state. (b) The probability that type-2 cells
have reached fixation by time t

⇤ = 3 ⇥ 103. Lines correspond to the WKB prediction,
Eq. (5.45b). Colours and symbols follow the same convention as in panel (a). Remaining
parameters are r

0

= 1.0 and N = 100.

type-2 cells, on the other hand, pushes the metastable state closer to the absorbing

state. This leads to a significant reduction in the fixation time (increase in fixation

probability by time t⇤). Increasing the mutation rate u
2

has a similar e↵ect to increas-

ing r
2

; the fixed point approaches the absorbing state, and the net e↵ect of selection

away from the absorbing state is reduced, leading to a decrease in the fixation time.

In line with the previous literature [46,51], increasing the mutation rate increases the

probability of tunnelling.

In both panels of Fig. 5.13 the theoretical predictions from the WKB method are

in excellent agreement with simulation results. This is the case even at the moderate

population size of N = 100. In Fig. 5.14(a) we show that this accuracy is retained for

increasing N . Small deviations between the theory and simulation results occur when

mutation rates are low (dashed lines and open symbols in Fig. 5.13). This is seen more

clearly in Fig. 5.14(b). The theory underestimates the fixation time (overestimates

the probability of fixation by time t⇤) at small values of u. This is a consequence of

assuming that the population approaches the metastable state in a negligible amount

of time. For very small mutation rates, it takes an increasing period of time for
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Figure 5.14. (a) Mean fixation time of type-2 cells in region I as a function of system
size. Symbols correspond to mean fixation times from simulations of the model (averaged
over an ensemble of 103 samples) initiated in the all-wild-type state. Filled symbols are for
u

1

= u

2

= 10�2, empty symbols are for u

1

= u

2

= 10�3. Solid lines (high mutation) and
dashed lines (low mutation) are the WKB prediction for fixation time, Eq. (5.44). (b) Mean
fixation time of type-2 cells in region I as a function of mutation rates. Here we have used
r

2

= 1 and N = 100. Symbols again correspond to mean fixation times from simulations of
the model (averaged over an ensemble of 103 samples) initiated in the all-wild-type state.

successful (i.e. non-vanishing) mutant lineages to appear. Deviations between theory

and simulation results occur when (1 � u
2

)r
1

' r
2

. At this point the theory breaks

down as the fixed point on the 1–2 edge approaches the absorbing state. The barrier

associated with adverse selection is then negligible and the assumptions underlying

the WKB approximation are no longer justified.

Finally we can compare the predictions of our theory with those based on the

homogeneous-state approach, Eq. (5.3). In particular we compare against the results

of Ref. [46]. In Fig. 5.15 we show mean fixation times as a function of the system size.

This plot shows the homogeneous-state approach (dashed) of Ref. [46] breaks down

in region I for large values of N . The figure reveals that the WKB predictions are

of good accuracy for population sizes greater than 50–200 or so, depending on model

parameters. This confirms that the approximations we make (large population size)

only limit the range of validity of the WKB approach to a relatively minor degree.

If the population of cells is too small then the strength of the noise is greater than

the e↵ect of selection, and the idea of a metastable state breaks down. If this is the

case the process is mutation-limited, and similar fixation times are observed when

the mutation rate is fixed, but fitness parameters are varied (circles and diamonds
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Figure 5.15. Mean fixation time of type-2 cells in region I as a function of system size.
Symbols correspond to mean fixation times from simulations of the model (averaged over an
ensemble of 103 samples) initiated in the all-wild-type state. Solid lines are the prediction
of Eq. (5.44). Dashed lines are the prediction of Ref. [46], which is computed from Eq. (5.3)
using the transition rates shown in Eq. (5.4).

converge at small N , as do squares and triangles, in Fig. 5.15). The WKB solution

becomes more accurate with increasing population size. For N & 100, Eq. (5.44) is in

much better agreement with simulation results than the existing theoretical estimates.

Region II

We now analyse the case where the system first approaches a fixed point in the interior

of the concentration simplex, before reaching the 1–2 boundary and settling into the

QSD as described above. When a fixed point exists away from the state-space bound-

aries, the solution procedure described above is no longer viable. This is because the

QSME (5.12) retains two degrees of freedom. The ansatz (5.14), however, is still a

valid approximation to the QSD about this interior fixed point. Substituting this into

the QSME, and taking the leading-order terms in the system size gives the expression

X

⌫

f⌫(x) (exp[⌫ · p] � 1) = 0, (5.47)

where f⌫(x) = T ⌫
Nx

/N and p = rS
0

(x). Unlike the boundary case described above, we

cannot discern a non-zero p which satisfies Eq. (5.47). Instead, we identify Eq. (5.47)
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as a Hamilton–Jacobi3 equation of the formH(x,p) = 0 and consider the characteristic

equations, also known as Hamilton’s equations [146]. These are of the form

ẋ
i

=
@H

@p
i

, ṗ = �@H
@x

i

. (5.48)

This formulation will be discussed in much more detail in the next Chapter, but for

now we will state that these equations define characteristic curves which satisfy the

principle of least action, i.e. they define the most-likely path between two points in

space [146]. If these trajectories can be found, subject to initial and final conditions,

then the quasi-stationary distribution can be reconstructed by calculating

S
0

(x) =

Z

p(t) · ẋ(t) dt =
Z

p · dx, (5.49)

which is the integral of p along the trajectory described by x.

For the initial conditions of these trajectories we take x to be the deterministic

fixed point in the interior of the domain, i.e. x = x⇤ given by Eq. (5.10), and p = 0.

For the final conditions, we must find a value of p. If the final position x is not a

fixed point, p is not uniquely determined, and it becomes a variational problem to

find a suitable p. We leave this discussion for Chapter 6. If x is a fixed point, the

trajectory must end at this point and we have ẋ = 0 and ṗ = 0. Hence the fixed

points of Eqs. (5.48) determine the final values of p, and we are then left to solve a

two-boundary-value problem.

We can find three fixed points of Eqs. (5.48) with p = 0. These are the fixed

points of the deterministic equations (5.5), which we label as M
1

= (0, 1, 0, 0) for the

absorbing state, M
2

= (x⇤
1

, 1 � x⇤
1

, 0, 0) for the boundary fixed point [with x⇤
1

given

by Eq. (5.7)], and M
3

= (x⇤
1

, x⇤
2

, 0, 0) for the interior fixed point [given by Eq. (5.10)].

The labelling of these states follows the convention of Ref. [54], who studied a similar

scenario in a predator–prey system. As stated, all trajectories start at the interior

point M
3

. The end points require a non-zero value of p, otherwise we will end up with

S
0

(x) = 0. These so-called ‘fluctuational fixed points’ of Eqs. (5.48) are labelled as F
1

for the absorbing state and F
2

for the boundary fixed point.

3After William Rowan Hamilton (1805–1865) and the previously introduced Carl Gustav Jacob
Jacobi.
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Problems of this type can be tackled using di↵erent techniques: firstly, the equa-

tions of motion (5.48) could be integrated using a shooting method to find the least-

action trajectory with a given final point [54, 56, 58]; secondly, the equations can be

integrated using an iterative scheme which converges to the optimal trajectory [53]

connecting given start and end points. Alternatively, minimisation techniques could

be used to find the least-action trajectory [147]. A detailed analysis of these di↵erent

methods follows in Chapter 6. In the present application we find that the iterative

method quickly converges for our problem. Results presented in the following use this

method, which is outlined below.

As stated earlier, the most probable path to the absorbing state is the sequential

extinction path, where first type-0 cells are lost, and then type-1 cells. Thus we only

focus on the trajectory from the interior fixed point M
3

to the boundary fluctuational

fixed point F
2

, and do not consider the simultaneous extinction path from M
3

to F
1

.

To determine the least-action trajectory, we initially fix the values of p for all times to

the values at F
2

, which are found by numerically solving ẋ = 0 and ṗ = 0 in Eq. (5.48).

We then numerically integrate the equations of motion (5.48) for the position vector

x forward in time, starting at M
3

and keeping p constant. This integration is carried

out for a su�cient range of time to reach the vicinity of the fixed point F
2

, but not

too long to avoid numerical errors building up. In the next step the relations for p

in Eq. (5.48) are integrated backwards in time using the trajectory x(t) found in the

previous iteration. The p values at the start of this backwards integration are chosen

as those corresponding to F
2

. This procedure is then iterated, with alternating forward

and backward integration of Hamilton’s equation. At each step of the procedure the

‘action’ of the path is calculated using Eq. (5.49). Following the convention of Ref. [54],

this value is labelled S
32

as it begins at point M
3

and ends at point F
2

. The iteration

of alternating forward and backward integration is then repeated until S
32

converges

to a stable value. The resulting trajectory through the concentration simplex [i.e. the

projection of the four-dimensional trajectory (x,p) onto the two dimensional plane of

x] is shown in Fig. 5.16(a).
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Figure 5.16. (a) The dominant escape path from the interior metastable state to the 1–2
boundary in region II. Parameters are r

0

= 1.00, r

1

= 0.98, r

2

= 0.95, and u

1

= u

2

= 10�2.
The thin line is the trajectory shown in Fig. 5.7 for N = 300. (b) The dominant escape
path from the interior metastable state to the absorbing state in region III. Parameters are
r

0

= 1.00, r

1

= 0.95, r

2

= 0.98, and u

1

= u

2

= 10�2. The thin line is the trajectory shown
in Fig. 5.8 for N = 300.

The final value of S
32

characterises the mean time taken to escape from the interior

fixed point to the boundary through the relation,

⌧
32

⇠ C
32p
N
eNS32 , (5.50)

where C
32

is a constant that is found by fitting to simulation data for the time taken

to reach the boundary [55]. This expression has the same functional dependence on

N as the one given in Eq. (5.44). The mean fixation time is given by ⌧
32

+ ⌧
21

, which

is the time to escape from the interior metastable state to the boundary plus the time

to escape from the boundary to the absorbing state; it is a two-hit process. The latter

time, ⌧
21

, is given by Eq. (5.44). Thus in region II the mean fixation time is given by

⌧ =
C

32p
N
eNS32 + ⌧

21

. (5.51)

Small changes to the parameters now have significant e↵ects on the fixation time,

as shown in Fig. 5.17 (filled symbols/solid lines). Increasing the fitness of the type-2

cells moves both the interior fixed point and the boundary fixed point towards the

absorbing all-type-2 state. It also reduces the strength of selection away from the

absorbing state. These combined e↵ects dramatically reduce the mean fixation time,

and its rate of increase with the population size.
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Figure 5.17. Fixation time in region II (filled symbols) and region III (empty symbols) of
Fig. 5.3 as a function of system size from simulations, averaged over 100 realisations. Lines
are from the theory, see Eq. (5.51) for region II (solid lines) and Eq. (5.52) for region III
(dashed lines). Remaining parameters are r

0

= 1.0 and u

1

= u

2

= 10�2.

As in region I, the probability of tunnelling decreases as the fitness advantage of

type-1 cells over type-2 cells increases. This is because the fixed point on the 1–2 edge

approaches the all-type-1 state. For the same reason, the tunnelling rate decreases as

the mutation rates decrease.

Region III

In this region fixation is controlled solely by the escape from the interior metastable

state; it is a one-hit process. Type-0 cells are the most advantageous in the sequence,

and the stable interior fixed point is located close to the all-wild-type state. The mean

fixation time is calculated again by considering the least-action trajectories described

by Hamilton’s equations (5.48), which are computed using the iterative method de-

scribed above. We now focus on trajectories from the stable interior fixed point M
3

to

the absorbing fluctuational fixed point F
1

. This direct path from the metastable state

to the all-type-2 state is shown in Fig. 5.16(b). The probability of tunnelling is higher

than in the previous cases. It increases as the fitness of type-2 cells and the mutation
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rates increase as the stable interior fixed point moves to lower numbers of type-1 cells

(i.e. away from the all-type-1 state).

The ‘action’, S
31

, is computed from Eq. (5.49) by integrating along the Hamiltonian

trajectory. The mean fixation time is then given by

⌧
31

⇠ C
31p
N
eNS31 , (5.52)

where again C
31

is a constant which is found by fitting to simulation results. We

see in Fig. 5.17 (empty symbols/dashed lines) that varying the model parameters has

a lesser e↵ect on fixation times than in region II. In region III, fixation is a one-hit

process – the population only has to escape the interior stable fixed point – and not

a two-hit process as in region II where the e↵ects of the two steps are compounded.

Contrary to the results for region I, the mean fixation time is a decreasing function

of r
1

in region III. This can be explained as follows: by increasing r
1

, the selection

strength away from the 1–2 boundary decreases and the stable state moves to higher

type-1 numbers, such that the population has an improved chance of reaching the

1–2 boundary. From there selection is directed towards the absorbing state, and the

time spent on the 1–2 boundary is negligible compared to the time to reach this edge.

Hence, the fixation time reduces as type-1 cells become more fit. The rate of increase

of the fixation time with the population size reduces as well.

There are systematic deviations between theory and simulation results in the data

set shown as open triangles in Fig. 5.17, and to a lesser extent also for the data shown

as open diamonds. This is attributed to the fact that the fitness parameters r
1

and r
2

are very similar to each other or equal for these instances, and they are also close to

the fitness of the wild-type. Selection is then close neutral and the metastable state is

only weakly attracting. The WKB approach then reaches its limits as the assumption

of a long-lived metastable state begins to break down.

Comparison across parameter space

Finally, we bring together the di↵erent theoretical approximations to the mean fixa-

tion time in Fig. 5.18. We fix all model parameters except for r
1

, and we sweep across
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Figure 5.18. Mean fixation times in regions I, II and III (circles) averaged over 103 re-
alisations. The thick line in good agreement in region I is from Eq. (5.44). The thick line
in region III is prediction of Eq. (5.52), where the coe�cient C

31

is found by fitting to nu-
merically obtained fixation times as a function of N . The dashed line in region II is the
prediction of Eq. (5.51), where the coe�cient C

32

is found by fitting Eq. (5.50) to the time
taken to reach the 1–2 boundary as a function of N . The faint dotted line is the prediction
of Ref. [46], which is based on the homogeneous-state assumption. Model parameters are
fixed to r

0

= 1.0, r

2

= 0.97, u

1

= u

2

= 10�2 and N = 300.

regions I, II and II. The theoretical predictions of Eqs. (5.44), (5.51), and (5.52) are in

excellent agreement with the simulation results within their respective regimes. The

expression for the time to escape from the metastable state on the 1–2 edge of the

concentration simplex, Eq. (5.44), is only valid for (1 � u
2

)r
1

> r
2

. As Eq. (5.51) is

dependent on this expression, it too reaches its limits close to the boundary of regions

II and III. However, the direct simultaneous extinction path used the characterise

absorption in region III accurately predicts the mean fixation time in part of region

II. This suggests that for (1 � u
2

)r
1

' r
2

, when the boundary fixed point approaches

the absorbing state, it is the simultaneous extinction path, not the sequential extinc-

tion path, that is dominant. As previously mentioned, the prediction based on the

homogeneous-state assumption (from Ref. [46]) does not accurately represent the data.

We have mentioned through this discussion that the probability of stochastic tun-

nelling occurring is dependent on the locations of the fixed points. In Fig. 5.19 we

plot the probability of tunnelling (measured from simulations) across the r
1

–r
2

pa-

rameter space. In regions I and II, for parameters su�ciently far from the region
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Figure 5.19. This heat map shows the probability that fixation occurs via the stochastic
tunnelling route, as opposed to sequential fixation route. The probability is calculated as
the fraction of realisations (out of an ensemble of 104 simulations) that do not pass through
the all-type-1 state before reaching fixation. The remaining model parameters are r

0
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= 10�2 and N = 200.

boundaries, the probability of tunnelling is zero. This is because the fixed point on

the 1–2 boundary is close the all-type-1 state, and demographic fluctuations are likely

to push the population to this homogeneous state. Close to the region boundaries, the

fixed point is located su�ciently far away from the all-type-1 state and this helps to

ensure the homogeneous type-1 state is not visited. Hence the probability of tunnelling

approaches one. In region III, when there is only a single fixed point which is located

in the interior of the domain, the probability of tunnelling is one. This agrees with the

predictions of the WKB approach, where the dominant escape path from this state

proceeds directly to the absorbing state, as shown in Fig. 5.16(b). The probability of

tunneling is also one in regions IV and V, where the tunnelling route is predicted by

the deterministic dynamics as shown in Fig. 5.5.
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5.6 Summary

Previous analysis of models describing the accumulation of multiple mutations in a

tissue have predominantly focussed on the homogeneous-state assumption. That is

the population spends the majority of the time in states where all cells harbour the

same number of mutations. These assumptions are only valid if the final mutant in

the sequence is the most advantageous cell-type, or if population numbers are small.

If this is not the case, then metastable states are found away from the homogeneous

states. Our analysis identified the escape from these metastable states as the key

bottleneck to fixation of cells with two mutations. For parameter values for which

there are no metastable states (i.e. when type-2 cells have the highest fitness), the

fixation dynamics is largely governed by the deterministic flow. The rate-limiting steps

are then the appearance of successful mutant lineages [47], and the subsequent fixation

of cells with two mutations is a zero-hit process for large population sizes. As such

the progression from healthy tissue (all wild-type) to susceptible tissue (all type-2;

inactivated TSG) will be fast relative to the cases in which a metastable state exists.

If there is one stable fixed point in the deterministic dynamics, the process becomes a

one-hit phenomenon limited by the escape from the corresponding metastable state. In

regions with two fixed points one observes a two-hit process. The population becomes

trapped in a first metastable state, escapes to a second metastable state, and then

reaches full fixation.

In addition to this qualitative classification, we used the WKB method to calcu-

late fixation times in parameter regimes previously inaccessible to existing analytical

approaches. Our theoretical predictions in principle rely on a limit of large popu-

lations, however comparison against simulation results demonstrates the accuracy of

our theory even at moderate population sizes of N = 100 cells. For populations much

smaller than this the assumptions of the WKB method break down. The rate-limiting

step is then the occurrence of a successful lineage of mutants and not the escape from

metastable states. The expressions obtained from the WKB approach become more
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accurate as the population size increases.

This analysis allowed us to classify how changes to the fitness landscape, mutation

rates, and population size a↵ect the probability of tunnelling and the time-to-fixation

of cells harbouring two mutations. In terms of the development of tumours, our

analysis shows that the path to accumulating mutations is not simply limited by the

mutation rates, but also by the escape from metastable states. Populations can exist in

a heterogeneous state for very long periods of time before fluctuations eventually drive

the second mutation to fixation. The probability with which stochastic tunnelling

occurs is, in part, determined by the location of these metastable states. If they are

located close to the all-type-1 state, then the probability of tunnelling is low.

Although our theory is aimed at large population sizes and exponentially growing

fixation times, we have shown that it can also make accurate predictions on biologically

relevant timescales. Assuming a cell generation lasts for one day, our theory can

capture fixation times of around 3 years or more (> 103 generations). Related studies

on the progression of cancer suggest a typical timescale on the order of 10 years to

accumulate a su�cient number of mutations [29, 127], which is well within the scope

of our theory. However, the times predicted by our theory are extremely sensitive to

parameter variation. This limits the parameter ranges for which biologically relevant

timescales can be generated. Specifically, the selective (dis)advantages need to be

small (. 10%). This is in agreement with selection coe�cients in related studies [29].

Of course the length of a cellular generation can vary by an order of magnitude or so,

depending on the specific cell type [122].

Our results do, however, allow an extrapolation to situations when fixation times

become very long, for instance for very large populations and/or when selection is

strongly against the invading mutants. In these scenarios, stochastic simulations can

become too expensive computationally to provide meaningful measurements. Analyt-

ical methods based on backward master equations or backward Fokker–Planck equa-

tions su↵er from computational limitations as well in such cases. Our mathematical
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work complements existing analytical approaches to the Moran model of cells acquir-

ing two successive mutations. This work fills the gap left by the existing literature and

leads to a more comprehensive understanding of mutation acquisition and stochastic

tunnelling in evolving populations.



Chapter 6

The WKB method: A user-guide

6.1 Introduction

The Wentzel–Kramers–Brillouin (WKB) method has been used to address a variety

of problems in physics and at the interface of biosciences, from problems in optics,

quantum mechanics and General Relativity to estimating the lifetime of a disease

outbreak. In this Chapter we explore the mathematical basis of the method in its

application to stochastic processes. The aim of this work is to create a self-contained

tutorial that will introduce the reader to the concepts that may be familiar to those

who have worked in this field for a long time, but may seem bewildering when looking

from the outside. This is currently work in progress, and although an article is in

preparation, this is not a complete representation of the document we hope to produce.

The WKB method has its origins in mathematics in the early 19th century. George

Green (1793–1841) and Joseph Liouville (1809–1882) first applied the method to find

approximate solutions to second order di↵erential equations [148,149]. It was extended

by Harold Je↵reys (1891–1989) to handle turning points [150], before it was popularised

by Gregor Wentzel (1898–1978), Hendrik Kramers (1894–1952) and Léon Brillouin

(1889–1969), who used the method to find approximate solutions to the Schrödinger

equation of quantum mechanics [151–153].

In systems subject to random dynamics, such as those described by stochastic

157
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di↵erential equations (SDEs) or Markov jump processes, the WKB method was pop-

ularised by Refs. [154–157]. It has been used to compute the statistics of rare events,

as reviewed in Ref. [158]. These events could be switching between attractive states

[75, 157, 159–161], or reaching an absorbing boundary, such as the extinction of a

population [52, 56, 59, 133, 162, 163]. As such it is natural to make comparisons with

large deviations theory (LDT) [164, 165]. On the other hand, the WKB approach

can also be used to make predictions about the stationary states of these stochastic

systems [58, 156,166,167].

The WKB method is built around the expansion of the probability distribution

of the stochastic process in terms of a small parameter, which is the amplitude of

the ‘noise’ in these systems. The ‘traditional approach’, in the sense that this proce-

dure is followed by the majority of the WKB literature, is to replace the probability

distribution with the WKB ansatz, also known as the eikonal approximation1 [157].

The Fokker–Planck or master equation describing the stochastic process can then be

expanded in powers of the small parameter, and the equations obtained at each order

can be solved. The resulting leading-order equation in terms of the small parameter

is of the form of a Hamilton–Jacobi equation, and when analytic solutions are not

possible, it is solved by either the method of characteristics or minimisation schemes.

This approach recovers the leading-order contribution to the stationary distribution

in terms of the small parameter. However, many questions are left unanswered by this

procedure: Why are the characteristic trajectories obtained from the Hamilton–Jacobi

equation called ‘most-likely paths’? In systems with absorbing boundaries, how can

we define the quasi-stationary distribution? How does this method compare with the

theory of large deviations and the concept of quasi-potentials?

In this Chapter we will present the method in such a way that shows it is a rigorous

mathematical procedure, but it can be understood and applied across a wide range

of problems. Through the analysis of examples of increasing complexity, we will de-

fine and illustrate the multitude of terms and expressions that appear throughout the

1This was the approximation scheme used by physicists to investigate wave-scattering phenomena
in problems such as optics and quantum mechanics.
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literature. We will show that the WKB approach provides an e�cient method for com-

puting (quasi-)stationary states in high-dimensional systems. Perhaps most usefully,

it allows the construction of quasi-potential landscapes, from which one can extract

transition statistics between basins of attraction, such as exit times and most-likely

transition paths.

In Sec. 6.2 we introduce a very simple toy model with one degree of freedom which

allows us to discuss and compute most-likely paths and quasi-stationary distributions.

This model is analysed using a perturbative approach, but this method is limited to

cases in which there exists an explicit small parameter in the forward operator of the

stochastic process. In Sec. 6.3 we show that the WKB method can be used when

the small parameter is the intrinsic noise intensity to generate expressions for the

quasi-stationary distribution. In Sec. 6.4 we use a four-state, ‘two-dimensional’ toy

model to introduce the concept of a landscape and multiple transition paths. Sec. 6.5

then contains the main body of this Chapter, in which we discuss how to generate

landscapes and (quasi-)stationary distributions, as well as how the WKB method

relates to other approaches, such as path-integral formulations or the theory of large

deviations. Finally, we illustrate some of the possible results that can be obtained in

Sec. 6.6.

6.2 Toy model with one degree of freedom

To introduce some of the terminology and concepts that feature throughout the WKB

literature, we will first consider the asymmetric random walk on a one-dimensional

lattice, as shown in Fig. 6.1. The state of the system is given by a single stochastic

variable, i, which describes the position of a particle on the lattice. This can also be

interpreted as a birth–death process in which the birth and death rates are independent

of the state of the population. In this process a single particle located at site i (0 <

i < N) can hop to state i � 1 with a rate 1, or to state i + 1 with a rate " ⌧ 1.

Additionally, state 0 is a reflecting boundary such that the only transition is to state

1 with rate ". Once state N has been reached the process is terminated. State N is
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Figure 6.1. One-dimensional asymmetric random walk on a lattice. State 0 is a reflecting
boundary; the only transition from state 0 is to state 1. At the opposite end, state N is an
absorbing boundary, and when N is reached the process is terminated.
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Figure 6.2. Example trajectory from state 0 to state N of the model shown in Fig. 6.1 and
described by the master equation (6.1). (a) The full trajectory. (b) The last 100 steps. (c)
The last 10 steps. Parameters used are N = 5 and " = 10�1.

e↵ectively an absorbing boundary, i.e. there are no transitions out of this state.

Denoting the probability to be found in state i at time t as P
i

(t), the process in

Fig. 6.1 is described by the continuous-time master equation

Ṗ(t) = W · P(t), (6.1)

where P = (P
0

, P
1

, . . . , P
N

)T and W is the (N + 1)⇥ (N + 1) transition matrix which

has elements w
i,i

= �(1 � �
i,0

+ "), w
i+1,i

= " and w
i�1,i

= 1 for 0  i < N . All other

matrix entries are zero. In particular the entire final column of W is zero, indicating

that there are no transitions out of state N .

Most-likely path

One feature that is mentioned throughout the WKB literature is the ‘most-likely path’

between two states. In this model we can consider the trajectories connecting the
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reflecting state 0 to the absorbing state N . As shown in Fig. 6.2, a typical trajectory

of our toy model with N = 5 spends the majority of the time hopping between states 0

and 1, with frequent visits to state 2, occasional visits to state 3 and very rare visits to

state 4. After ⇠15, 000 state transitions, or a time of ⇠60, 000 units, this realisation

reaches state N = 5. But how can we measure the likelihood that we observe this

trajectory, and in what space is the probability of a path defined?

The space of trajectories connecting states 0 and N is uncountably infinite. It

is uncountable because the transitions can occur after any positive length of time.

This space then lends itself to the path-integral description, which we will discuss

in Sec. 6.5. We can, however, define the most-likely path in a countable space of

trajectories by considering only the state of the system (i = 0, 1, . . . , N) and ignoring

the time at which the transitions occur. This space is a projection of the former onto

the state space, but still path probabilities are not clear due to the large degeneracy

of trajectories hopping to and from state 0 multiple times. If a path visits 0 m-times

before reaching state N , then there are m paths from 0 to N contained within this

single path. To avoid this degeneracy we only focus on the final path from 0 to N .

That is we compute a realisation of the birth–death process until state N is reached.

We then look from the final time to the point at which we first reach state 0. In

Fig. 6.3(a), we show ten realisations of this final path from state 0 to state N = 5.

Just focusing on the state-space (ignoring time), we see that nine out of ten of the

trajectories shown follow the path 0 ! 1 ! 2 ! 3 ! 4 ! 5. We refer to this as the

forward-only path. Only one of the paths shown has a backwards step where i ! i�1.

We can now define our ensemble of paths as those which leave state 0 (and do not

return) and reach state N with k 2 {0, 1, 2, . . . } backwards steps. The most-likely

of these paths is then the forward-only path (k = 0), as seen in Fig. 6.3(b). We can

determine how likely it is to observe paths with k backwards steps by considering the

probability of stepping forwards or backwards, as we do when we execute the Gillespie

algorithm. For a particle at site 0 < i < N , the probability that the next transition

is to i + 1 is q
i+1,i

= "/(1 + "). The probability that the next transition is to i � 1 is
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Figure 6.3. (a) Examples of final trajectories from state 0 to state N in our toy model,
Fig. 6.1. Here the ‘time to absorption’ is defined as s = t � t
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, such that all runs reach
state N at s = 0. The trajectory marked with a thick line is the only one out of the ten
samples shown in which a step i ! i � 1 is observed. (b) Histogram of final trajectories
with k backwards steps, computed from an ensemble of 104 realisations. The crosses are the
predictions of Eq. (6.4), where the number of possible paths are M
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q
i�1,i

= 1/(1 + "). As state 0 is a reflecting boundary, we have q
1,0

= 1.

The forward-only path (k = 0) from state 0 to state N is observed with probability

Pr(k = 0) =
1

Z

N�1

Y

i=0

q
i+1,i

=
1

Z

✓

"

1 + "

◆

N�1

, (6.2)

where Z is a normalisation factor for this probability space (to be determined below).

A trajectory with a single backward step, as shown in Fig. 6.3(a), is observed with

probability

Pr(k = 1) =
1

Z

N�1

X

j=2

( 

j�1

Y

i=0

q
i+1,i

!

⇥ q
j�1,j

⇥
 

N�1

Y

i=j�1

q
i+1,1

!)

=
1

Z

N�1

X

j=2

(

✓

"

1 + "

◆

j�1

⇥ 1

1 + "
⇥
✓

"

1 + "

◆

N�j+1

)

=
1

Z

N�1

X

j=2

"

(1 + ")2

✓

"

1 + "

◆

N�1

=
1

Z
(N � 2)

"

(1 + ")2

✓

"

1 + "

◆

N�1

. (6.3)

We note that the backwards step 1 ! 0 is not included in the above sum as we only

consider trajectories which leave state 0 and do not return. In general, a path with k
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backward steps is observed with probability

Pr(k) =
1

Z
M

k

✓

"

(1 + ")2

◆

k

✓

"

1 + "

◆

N�1

, (6.4)

where M
k

is the number of possible paths that have k backward steps.2 We can

calculate the normalisation factor by imposing
P1

k=0

Pr(k) = 1. The predictions of

Eq. (6.4) are in excellent agreement with numerical results, as shown in Fig. 6.3(b).

If we were to consider the timing of the transitions, then the probabilities of observ-

ing specific paths become zero. Instead we must consider the probability density of

paths, which is closely linked with the theory of large deviations and the path-integral

framework. These links will be discussed in Sec. 6.5.

Quasi-stationary distribution

As q
i�1,i

� q
i+1,i

, we expect the system to be found close to state 0 if it has not

already reached the absorbing state. Indeed this is what we see in the time-series in

Fig. 6.2. The distribution in which the system is found prior to fixation, which in this

case is peaked about state 0, is referred to as the quasi-stationary distribution (QSD).

A mathematician would describe this as “the distribution that is invariant under time-

evolution when the process is conditioned on survival (non-absorption).” [168]. The

system leaks from this distribution to the absorbing state on a very long but finite

timescale.

To identify the QSD, we decompose the solution of the master equation (6.1) onto

the eigen-basis of the matrix W. This gives

P(t) =
N

X

↵=0

c
↵

v(↵)e�↵t, (6.5)

where �
↵

and v(↵) are eigenvalues and eigenvectors of W, and the c
↵

are coe�cients

determined by the initial condition. As state N is absorbing, one eigenvalue (�
0

) of

W is zero and the corresponding eigenvector is v
(0)

i

= �
i,N

. We must have c
0

= 1 as

P
N

(t ! 1) = 1. All other eigenvalues are negative (and real), as argued in Sec. 4.3.

2The quantity M

k

is found by enumerating the paths with k backwards steps. We have not found
a general expression for this number.
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We order these remaining eigenvalues by there magnitudes, such that |�
1

|  |�
2

| 
· · ·  |�

N

|.
In our toy model there is a separation of timescales. This is characterised by a sepa-

ration of the eigenvalues, |�
1

| ⌧ |�
2

|, which can be seen in Fig. 6.4(a). One eigenvalue

(�
1

) behaves as a power of the small parameter ", whereas the other eigenvalues (�
↵�2

)

are much larger in magnitude and are almost independent of ". For times t � |�
2

|�1,

all contributions to Eq. (6.5) from the eigenvectors v(↵�2) will be exponentially small.

This fast timescale corresponds to the relaxation to the QSD. On this timescale we

can approximate the distribution as

P(t) ⇡ v(0) + c
1

v(1)e�1t. (6.6)

The eigenvalue �
1

characterises the slow timescale, which corresponds to the leaking to

the absorbing state. After a short period of time which satisfies |�
2

|�1 ⌧ t ⌧ |�
1

|�1,

we have P
N

(t) ⇡ 0 and e�1t ⇡ 1. Thus from Eq. (6.6) we require c
1

v
(1)

N

= �v
(0)

N

= �1.

Without loss of generality, the coe�cient c
1

can be set to unity, and we change the

normalisation of the eigenvector v(1) such that v
(1)

N

= �1. Using v
(0)

i

= �
i,N

, we can

now express P(t) as

P
0iN�1

(t) ⇡ v
(1)

i

e�1t, P
N

(t) ⇡ 1 � e�1t. (6.7)

This is exactly Eq. (5.11) from the previous Chapter. As the QSD, P⇤, is conditioned

on non-absorption, we can write P ⇤
i

= (1 � �
i,N

)v(1)
i

for 0  i  N . Thus, the QSD

is given by the eigenvector of the master equation which corresponds to the slowest

eigenvalue.

We can now determine the scaling of the slowest eigenvalue with the small param-

eter " by considering the mean fixation time. First, using Eq. (6.7), we observe that

the mean fixation time is given by

ht
fix

i =
Z 1

0

tṖ
N

(t) dt ⇡ ��
1

Z 1

0

te�1t dt = ���1

1

. (6.8)

Second, we can calculate the mean fixation time from the backward master equation,

as described in Sec. 2.4. Following the derivation of Eq. (2.25), the mean fixation time
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Figure 6.4. (a) Absolute value of the non-zero eigenvalues of the matrix W in Eq. (6.1),
along with the predicted scaling of the slowest eigenvalue, |�

1

| ⇠ "

N . (b) Elements of the
eigenvector v(1) (or equivalently the QSD) are approximately "

i, in agreement with our

perturbative treatment. Eigenvectors are scaled such that v

(1)

N

= �1. In this illustration we
have used N = 5.

conditioned on starting in state i < N , t
i

, is given by

t
i

=
N�1

X

k=i

"�(k+1)

 

1 +
k

X

`=1

"`

!

. (6.9)

For all initial conditions i < N , there is a term O �

"�N

�

. Hence, for small ", we arrive

at ht
fix

i ⇠ "�N . Equating this with Eq. (6.8), we can conclude that �
1

⇠ �"N . This

scaling is shown in Fig. 6.4(a).

The eigenvector v(1), and hence the QSD, can be approximated by considering a

perturbative expansion of the forward operator W = W(0) + "W(1) and of the proba-

bility P(t) =
P1

k=0

"kP(k)(t). At leading order, O ("0), one recovers

Ṗ
(0)

(t) = W(0) · P(0)(t) ) P
(0)

i

(t) = exp
⇥

W(0)t
⇤ · P(0)(0). (6.10)

This is the solution to the master equation in which particles can only hop from state i

to state i�1 with a rate 1 (this is the process described by the matrix W(0)). Starting

with the initial condition i
0

= 0, no dynamics can happen and hence P
(0)

i

(t) = �
i,0

.

For initial conditions i
0

> 1, we see that P
(0)

0<ii0
(t) = ti0�ie�t/(i

0

� i)! ⇠ e�t, which

quickly collapses to �
i,0

. For this reason we only consider the initial condition i
0

= 0,

and hence P
(0)

i

(t) = �
i,0

for t � 0. By considering the higher-order equations in terms

of ", which are of the form

Ṗ
(k)

(t) = W(0) · P(k)(t) +W(1) · P(k�1)(t), (1  k < N) (6.11)
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we can recover P (i)

i

(t) ⇠ "i for 1  i < N . Hence, from our definition of the QSD we

obtain v
(1)

i

⇠ "i for 0  i < N . This scaling is shown in Fig. 6.4(b).

Although this perturbative approach is very intuitive, its applications are limited.

This is because the method relies on the presence of an explicit small parameter in

the forward operator W. In many processes, as we will see in the next section, there

are no explicit small parameters in the reaction scheme. Instead it is the amount of

noise that is the small parameter of interest. If this is the case, how do we extract the

quasi-stationary distribution? For this we introduce the WKB method.

6.3 The WKB method in one dimension

The WKB method is most easily illustrated by considering problems described by a

single stochastic variable. In these one-dimensional scenarios we are able to make

analytical progress and obtain closed-form expressions which approximate the quasi-

stationary distribution (QSD). We apply the WKB method to two distinct classes of

problem: those described by a Fokker–Planck equation, and the familiar individual

based-models described by a master equation. As discussed in Sec. 2.7, the Fokker–

Planck equation can be used to approximately describe an individual-based model.

However, we will first consider it here as the outright description of a continuous

stochastic process. Comparisons with results obtained from the master equation will

be made at the end of the section. We will start with the Fokker–Planck equation as the

mathematical motivation for the WKBmethod is more clear in the di↵erential equation

framework. The treatment of the master equation is then e↵ectively a generalisation

of this method to jump processes.

WKB and the Fokker–Planck equation

The evolution of a continuous variable that is a↵ected by noise can be described by

a Fokker–Planck equation [74]. If the strength of this noise is given by a parameter
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" ⌧ 1, then the Fokker–Planck equation is given by

⇢̇(x, t) = � @

@x
[A(x)⇢(x, t)] +

"

2

@2

@x2

[B(x)⇢(x, t)] , (6.12)

where ⇢(x, t) is the probability density function for the continuous variable x at time

t. The drift term A(x) describes the deterministic evolution of x, and the di↵usion

term B(x) > 0 describes the influence of the noise.

For simplicity we assume that the drift term permits a unique stable fixed point

at x⇤ > 0, i.e. A(x⇤) = 0. The scenario of multiple stable states will be discussed

in Sec. 6.5. We also assume that there is an absorbing boundary located x = 0.3

Considering the deterministic dynamics, or using the arguments of the previous section,

the system will relax to the QSD about the stable fixed point x⇤. The escape to the

absorbing state is a rare event, and can be pictured as the leaking of the probability

density function from the QSD to x = 0. Assuming this leaking timescale is very long,

we can determine the QSD by setting ⇢̇(x, t) ⇡ 0 in Eq. (6.12). We can also arrive at

the condition ⇢̇(x, t) ⇡ 0 by replacing the probability density function with an ansatz

of the form of Eq. (6.7). This approach was described in the previous Chapter for

jump processes. We label the QSD as ⇢⇤(x), which satisfies the second-order ODE

0 ⇡ � d

dx
[A(x)⇢⇤(x)] +

"

2

d2

dx2

[B(x)⇢⇤(x)] . (6.13)

This equation is singularly perturbative in the small parameter "; the behaviour of

the solution in the " ! 0 limit cannot be approximated by setting " = 0 and then

solving Eq. (6.13) [145]. To analyze the behaviour of the solution in the small-" limit,

one considers an ansatz of the form ⇢⇤(x) ⇠ exp [�P1
�=0

���1S
�

(x)]. Here � > 0

is a small parameter that contains the "-dependence of the solution, such that the

S
�

(x) are independent of both � and ". The parameter � acts as a rescaling of the

amplitude of ⇢⇤(x), allowing us to zoom in to regions where there is exponential or

dissipative behaviour [145]. In our process, there is a rapid dissipation, or fast decay,

of the probability density away from the stable fixed point. To determine the relation

3We assume that this boundary is ‘regular’, i.e. the probability of reaching the boundary is
non-zero and the expected time to reach the boundary is finite [12].
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between � and ", we substitute the ansatz into Eq. (6.13). Applying the product rule

for di↵erentiation gives

0 = �A0(x) + A(x)

" 1
X

�=0

���1S 0
�

(x)

#

+
"

2
B00(x) � "B0(x)

" 1
X

�=0

���1S 0
�

(x)

#

� "

2
B(x)

" 1
X

�=0

���1S 00
�

(x)

#

+
"

2
B(x)

" 1
X

�=0

���1S 0
�

(x)

#

2

, (6.14)

where we have used the notation F 0(x) = dF/dx, and we assume the fields S
�

(x),

as well as the drift and di↵usion terms, are smooth. As A(x), B(x), and S
�

(x) are

independent of the parameters � and ", we can be sure that the largest terms in this

expression are ��1A(x)S 0
0

(x) and ��2"B(x)
⇥

S 0
0

(x)
⇤

2

/2. Through dominant balance

these terms must be of the same order and cancel each other out, hence � = O (") is

required. For simplicity we choose � = ", such that the QSD is of the form

⇢⇤(x) ⇠ exp

"

�
1
X

�=0

"��1S
�

(x)

#

. (6.15)

The values of S
�

(x) are then found by substituting the ansatz (6.15) into Eq. (6.13)

[i.e. replace � with " in Eq. (6.14)], and considering equations at di↵erent powers of

". Taking only the leading-order terms in " gives

A(x)p(x) +
1

2
B(x)p2(x) = 0, (6.16)

where we have introduced p(x) = S 0
0

(x). Eq. (6.16) is quadratic in p(x). One solution

is simply p(x) = 0, and the other is p(x) = �2A(x)/B(x). Integrating this second

solution gives

S
0

(x) = �
Z

x

x

⇤

2A(y)

B(y)
dy, (6.17)

where the arbitrary constant of integration is chosen such that S
0

(x⇤) = 0. A similar

procedure can be used to find the next-leading-order correction, S
1

(x) = ln[B(x)/B(x⇤)].

The approximate solution to Eq. (6.13) is then

⇢⇤(x) ⇠ N
B(x)

exp



1

"

Z

x

x

⇤

2A(y)

B(y)
dy

�

, (6.18)

where N is an overall normalisation constant.
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If the system does not have an absorbing state at x = 0, then Eq. (6.18) is the exact

stationary distribution of the Fokker–Planck equation found by setting the probability

current to zero [72], i.e. ⇢⇤(x) is given by the solution of

J(x) = A(x)⇢⇤(x) � "

2

d

dx
[B(x)⇢⇤(x)] = 0. (6.19)

WKB and the master equation

We can now describe the application of this method to individual-based stochastic

processes that are described by a discrete variable, n, which can take the values 0 
n < 1. If there are M possible reactions, and the r-th reaction occurs with rate T ⌫r

n

and has stoichiometric e↵ect ⌫
r

on the population, then the master equation can be

written as

Ṗ
n

(t) =
M

X

r=1

⇥

T ⌫r
n�⌫r

P
n�⌫r(t) � T ⌫r

n

P
n

(t)
⇤

=
M

X

r=1

(E�⌫r � 1)T ⌫r
n

P
n

(t), (6.20)

where E⌫r is the shift operator: E⌫rF(n) = F(n + ⌫
r

) [12]. We assume the system

has a typical (large) number of individuals, ⌦, which is referred to as the system

size. This parameter determines the influence of the intrinsic noise in these discrete

processes [12]. As in the Fokker–Planck scenario, we will assume there exists a unique

stable fixed point in the deterministic dynamics at x⇤, where x = lim
⌦!1 n/⌦, and

that there exists an absorbing boundary at n = 0.

The WKB treatment of Eq. (6.20) was first achieved in Ref. [156] by replacing the

shift operators in Eq. (6.20) by their continuous counterparts

E⌫r ! exp



⌫
r

⌦

@

@x

�

=
1
X

`=0

1

`!

⇣⌫
r

⌦

⌘

` @`

@x`

, (6.21)

which is valid provided that the transition rates vary smoothly between states. The

master equation in the continuum limit can then be written as

1

⌦
⇢̇(x, t) =

M

X

r=1

1
X

`=1

1

`!

✓�⌫
r

⌦

◆

`

@`

@x`

⇥

f
r

(x)⇢(x, t)
⇤

, (6.22)

where ⇢(x, t) = ⌦P
⌦x

(t), and f
r

(x) = T ⌫r
⌦x

/⌦ as before.4

4We could expand the reactions rates in further powers of ⌦, such that T

r

⌦x

= ⌦f

r

(x) + g

r

(x) +
h

r

(x)/⌦ + . . . , as described in Ref. [52]. However in this section we only consider the leading-order
contributions.
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As can be seen, derivatives of order ` are multiplied by the small parameter ⌦�` and

Eq, (6.22) is singularly perturbative. To characterise the behaviour, the ansatz (6.15)

has previously been employed [156], where we now replace the noise strength " with

the inverse system size, ⌦�1. Setting ⇢̇(x, t) ⇡ 0 in Eq. (6.22), we seek to solve

0 ⇡
M

X

r=1

1
X

`=1

1

`!

✓�⌫
r

⌦

◆

` d`

dx`

(

f
r

(x) exp

"

�
1
X

�=0

⌦1��S
�

(x)

#)

. (6.23)

At leading order in the system size we have the expression

M

X

r=1

w
r

(x)
�

e⌫rp(x) � 1
�

= 0, (6.24)

where again p(x) = S 0
0

(x). Eq. (6.16) can be recovered by replacing the exponential

with 1 + ⌫
r

p(x) + ⌫2
r

p2(x)/2. However this approximation is not necessarily justified

as we cannot assume terms p3(x) or greater are negligible.

For the case in which the process can only step from state i to i ± 1, i.e. ⌫ = ±1,

Eq. (6.24) can be solved to find p(x). Similar to Eq. (6.16), there are two possible

solutions, p(x) = 0 and p(x) = ln[f�(x)/f+(x)]. Integrating this second solution leads

to

S
0

(x) =

Z

x

x

⇤
ln

✓

f�(y)

f
+

(y)

◆

dy, (6.25)

where again the constant of integration is defined by S
0

(x⇤) = 0. This gives the

leading-order contribution in the system size to the QSD as

⇢⇤(x) ⇠ N exp



⌦

Z

x

x

⇤
ln

✓

f
+

(y)

f�(y)

◆

dy

�

, (6.26)

where N is an overall normalisation constant. This is the same expression we obtained

in the previous Chapter when we discussed the escape from the metastable state

located on the state-space boundary. In that case we estimated N by considering a

Gaussian approximation to the QSD about the fixed point x⇤.

Eq. (6.26) can be compared with the stationary solution of Eq. (6.20) in the absence

of the absorbing state [12,62].5 From Eq. (2.54), this stationary solution is given by

P
n

(1) = N
n

Y

i=2

T+

i�1

T�
i

= N exp

"

n

X

i=2

ln

✓

T+

i�1

T�
i

◆

#

. (6.27)

5The absorbing state can be removed by setting T

�
1 = 0.
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Comparison

Fokker–Planck Master equation

p(x) �2A(x)

B(x)

ln
⇣

f�(x)

f+(x)

⌘

S
0

(x) � R

x

x

⇤
2A(y)

B(y)

dy
R

x

x

⇤ ln
⇣

f�(y)

f+(y)

⌘

dy

⇢⇤(x) ⇠ exp
h

⌦
R

x

x

⇤
2A(y)

B(y)

dy
i

⇠ exp
h

�⌦
R

x

x

⇤ ln
⇣

f�(y)

f+(y)

⌘

dy
i

Table 6.1. Comparison of results of the WKB approach from the Fokker–Planck and master
equations for the birth–death individual-based process (⌫ = ±1). We have replaced the small
parameter " with ⌦�1 in the Fokker–Planck results, and the drift and di↵usion terms are
given by A(x) = f

+

(x) � f�(x) and B(x) = f

+

(x) + f�(x), respectively.

We can now compare the results of the WKB treatment of the master equation

with those obtained from the Fokker–Planck equation that approximately describes

the same individual-based process. The construction of the Fokker–Planck equation is

described in Sec. 2.7, and for the birth–death process we have A(x) = f
+

(x) � f�(x),

B(x) = f
+

(x) + f�(x), and " = ⌦�1. We summarise the WKB results in Table 6.1.

As pointed out in Ref. [169], the values of S
0

(x) in the Fokker–Planck and master

equation formalisms are not in exact agreement with each other. These di↵erences

will be inflated in the QSD, ⇢⇤(x), where S
0

(x) features in the exponent. However,

at the deterministic fixed point x⇤, S
0

(x⇤) and its first and second derivatives are the

same between the two formalisms [169]. Thus, close to the fixed point, we expect the

functions to be very similar. This agreement has also been pointed out in Refs. [72,159].

Example: Logistic population growth

An illustrative example of a stochastic process which features a quasi-stationary dis-

tribution is the well-studied birth/death/competition process [52, 170–173], which is

based on the Verhulst model of population growth [174].6 This process is described by

6Pierre François Verhulst (1804–1849).
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the reactions

A
↵�! 2A, A

��! ;, 2A
�/⌦��! A, (6.28)

where A represents an individual, ↵, �, and � are rates and ⌦ is the (large) system-size

parameter. The state of the system is described by the stochastic variable n, which

is the number of individuals present in the population. The time evolution of the

probability distribution of n is described by the master equation (6.20) with transition

rates

T+

n

= ↵n, (6.29a)

T�
n

= �n+
�n(n � 1)

⌦
, (6.29b)

where we have combined the death and competition reactions in Eq. (6.28) as they

have the same stoichiometric coe�cient, ⌫ = �1.

The deterministic dynamics of this model for the concentration x = lim
⌦!1 n/⌦,

satisfy

ẋ = (↵� �)x



1 � �

↵� �
x

�

. (6.30)

This is simply the logistic equation with a stable fixed point at x⇤ = (↵ � �)/�

(provided ↵ > �) and an unstable (but absorbing) fixed point at x = 0.

In Fig. 6.5 we show the leading-order contributions to the QSDs in terms of the

system size, as described in Table 6.1. The distribution obtained from simulations is in

very good agreement with these results. As the distance from the fixed point increases,

so does the deviation between results from the master equation and Fokker–Planck

approximation.

It is worth noting here that naively we expect the results obtained from the Fokker–

Planck approximation to become increasingly accurate as the system size is increased.

This is true in the bulk of the distribution close to the fixed point x⇤. However, in the

tails of the distribution the separation between the Fokker–Planck results and those

obtained from the master equation grow exponentially with the system size. Although

the absolute di↵erence between the two quasi-stationary distributions is decreasing

due to narrowing of the tails as ⌦ increases, the relative di↵erence can grow to several

orders of magnitude.
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Figure 6.5. (b) The quasi-stationary distributions (QSDs) calculated from the master
equation (solid line) and from the Fokker–Planck equation (dashed line), as described in
Table 6.1. These are compared with the QSD calculated from simulations of the individual-
based model (dots). Simulations are initialised at the fixed point and run until a fixed time
(t = 104). The final state is then recorded, and runs that have reached fixation are discarded.
The dots are a histogram of the remaining data points from 107 realisations. Inset plot shows
the same data on a linear vertical axis. Parameters used are ↵ = 1.0, � = 0.05, � = 1.0,
⌦ = 20.

6.4 Four-state toy model

0

1

2

3
1

1
f1"

f2"

"

"

Figure 6.6. Illustration of the four-state, ‘two-dimensional’ toy model. The arrows indicate
the possible transitions between the states. Bold arrows indicate that those transitions occur
with a larger rate. No arrows out of state 3 indicate that it is an absorbing state.

To further illustrate the concepts of quasi-stationary distributions and most-likely

paths, we introduce the four-state toy model shown in Fig. 6.6. The system starts

in state 0, and will jump to either state 1 or 2 with equally small transition rates

" ⌧ 1. From these states there is a large transition rate back to state 0, or a small

transition rate (f
1

" or f
2

", respectively) to state 3 which is absorbing. There are now
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Figure 6.7. Time series of the toy model shown in Fig. 6.6. The spikes indicate that time
time spent in states 1 and 2 is very small. The absorbing state is reached through state 2 in
this simulation. The parameters used are " = 10�2, f

1

= 1, and f

2

= 3.

two separate routes to the absorbing state, either proceeding through state 1 or state

2, and hence it can be thought of as a process in two dimensions (even though it can

be described by a single stochastic variable).

As the reaction rates have a similar structure to the one-dimensional toy model

introduced in Sec. 6.2, it is clear that prior to absorption the system spends the

majority of the time in state 0. This is seen in the sample trajectory shown in Fig. 6.7.

The master equation describing the process in Fig. 6.6 can be written as
0
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. (6.31)

Through a simple perturbative expansion in the small parameter " (similar to the

procedure described in Sec. 6.2) it can be shown that the probability to be found in

state 0 (prior to fixation) is 1�2"+O ("2) and the probability to be found in either of

states 1 or 2 (prior to fixation) is "+O ("2). This is the quasi-stationary distribution.

Once the system reaches the absorbing state, its final trajectory from state 0 to

state 3 will be 0 ! 1 ! 3 with probability f
1

/(f
1

+f
2

) and 0 ! 2 ! 3 with probability

f
2

/(f
1

+ f
2

). In Fig. 6.7 we have used f
1

= 1 and f
2

= 3. Hence we expect the first

path through state 1 to be realised 25% of the time, and the second path through
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Figure 6.8. (a) The probability of observing each of the path to absorption, obtained
from 105 simulations of the process shown in Fig. 6.6. (b) The arrival time distribution at
the absorbing state from the same data used in (a). The leading eigenvalue of the matrix
in Eq. (6.31) scales as (f

1

+ f

2

)"2 + O �

"

3

�

. The parameters are the same as Fig. 6.7, i.e.
" = 10�2, f

1

= 1, and f

2

= 3.

state 2 to be realised 75% of the time. This is confirmed in Fig. 6.8(a).

The arrival times at the absorbing state are determined by the slowest eigenvalue

of the matrix in Eq. (6.31), �
1

. This eigenvalue controls the leaking from the QSD, as

described in Sec. 6.2, and we expect �
1

to scale as "2 (as we require two consecutive

steps of rate ⇠ "). To adjust for the increased rate of reaching the absorbing state,

we expect the eigenvalue to be of the form �
1

⇡ �c(f
1

+ f
2

)"2, for constant c. The

approximation for the arrival time density is then Ṗ
3

(t) ⇠ e�1t. The accuracy of this

approximation is confirmed in Fig. 6.8(b), where we find c ⇡ 1.

In more general systems which do not exhibit the small parameter in the forward

operator, we can again use the WKB method to predict the quasi-stationary distribu-

tion and also most-likely paths.

6.5 The WKB method in higher dimensions

For stochastic processes described by two or more variables, analytic progress is almost

impossible.7 If the number of stochastic variables in the system is given by d � 2, then

we call this a d-dimensional system. As described in Sec. 6.3, the small parameter in

these systems corresponds to the strength of the noise, rather than explicitly appearing

7Analytical solutions are available for the two-type branching process [32], but, in general, such a
description is usually lacking.
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in the dynamics. Following Sec. 6.3, we start by analysing a continuous stochastic

process described by a Fokker–Planck equation, before generalising the approach to

discrete jump processes.

An important consideration, which will be illustrated through an example at the

end of this Chapter, is whether there exist multiple stable states in our system. In

the one-dimensional system analysed in Sec. 6.3, we restricted ourselves to the case

of a single stable state, and hence we had a unique QSD. If there are multiple stable

states, labelled {x⇤
1

,x⇤
2

, . . . }, then there are a corresponding number of QSDs. The

distribution of probability mass between these states on the fast relaxation timescale is

determined by the initial condition, and on longer timescales by the leaking from one

state to another. If we start in the basin of attraction of x⇤
a

, then we will initially relax

to the QSD about this stable state. As time progresses, the probability slowly (i.e.

more slowly than the relaxation timescale) leaks to neighbouring stable states. The

quantities of interest are now the QSDs about each of the stable states, the time to

escape from these states, the most-likely transition paths, and the overall stationary

state. Note that the scenario of systems with absorbing states is included in this

framework.

The Fokker–Planck equation in d-dimensions, with a small noise strength " ⌧ 1,

is given by

⇢̇(x, t) = �
X

i

@

@x
i

[A
i

(x)⇢(x, t)] +
"

2

X

i,j

@2

@x
i

@x
j

[B
ij

(x)⇢(x, t)] , (6.32)

where ⇢(x, t) is the probability density function for the continuous variables x =

(x
1

, . . . , x
d

)T at time t. The drift term A(x) describes the deterministic evolution

x, and the di↵usion matrix B
ij

(x) describes the influence of the noise, including the

correlations of the noise between the stochastic variables which are described by the

o↵-diagonal terms of this matrix [74].

To find the QSD about the stable state x⇤
a

, we restrict the process to the basin

of attraction of this state and assume that it is approximately stationary such that
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⇢̇(x, t) ⇡ 0. We can then write Eq. (6.32) as

0 ⇡ �
X

i

@

@x
i

[A
i

(x)⇢⇤
a

(x)] +
"

2

X

i,j

@2

@x
i

@x
j

[B
ij

(x)⇢⇤
a

(x)] , (6.33)

where ⇢⇤
a

(x) is the QSD about the stable state x⇤
a

. Eq. (6.33) is singularly perturbative

as the small parameter " multiplies the highest-order derivatives. As a result, the

quasi-stationary solution ansatz will be analogous to the one-dimensional scenario,

Eq. (6.15). Thus within the basin of attraction of x⇤
a

, the QSD takes the form

⇢⇤
a

(x) ⇠ exp

"

�
1
X

�=0

"��1S(a)

�

(x)

#

. (6.34)

Substituting this ansatz into Eq. (6.32), and taking leading-order terms in the small

parameter ", we arrive at

H(FPE)(x,p) = A(x) · p+
1

2
p · B(x) · p = 0, (6.35)

where p = rS
(a)

0

(x). The one-dimensional example is included in this framework.

However, in d � 2 dimensions we cannot directly identify a non-zero p which satisfies

Eq. (6.35). In fact the problem is non-integrable and underdetermined; we have 2d

degrees of freedom (x
1

, . . . , x
d

; p
1

, . . . p
d

), but only one constraint (H = 0). The equa-

tion is labelled by H(FPE)(x,p) as it is a Hamilton–Jacobi equation; it is a first-order

di↵erential equation of the form H[x,rS
(a)

0

(x)] = 0 [146].

For individual-based models in d � 2 dimensions, the master equation can again

be expressed in terms of the shift operators as

Ṗ
n

(t) =
X

r

⇥

T ⌫r
n�⌫r

P
n�⌫r(t) � T ⌫r

n

P
n

(t)
⇤

=
X

r

(E�⌫r � 1)T ⌫r
n

P
n

(t), (6.36)

where n = (n
1

, . . . , n
d

)T and ⌫
r

is a d-dimensional vector that describes the change of

state due to reaction r. We assume there exists a large parameter ⌦ that characterises

the typical system size, and hence the strength of the noise through " ! ⌦�1. With

this we can write the master equation in the continuum limit by replacing the shift

operators with di↵erentials as described in Sec. 6.2. The analysis proceeds as before,

and we arrive at the leading-order equation in the system size

H(ME)(x,p) =
X

r

f
r

(x) (e⌫r·p � 1) = 0, (6.37)
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where p = rS
(a)

0

(x) is defined in the basin of attraction of the stable state x⇤
a

.

Solving the Hamilton–Jacobi Eq. (6.37) [or Eq. (6.35)] gives the function S
(a)

0

(x),

and this allows us to compute the dominant contribution to the QSDs in terms of

the system size. The solution to these equations can be found using the method of

characteristics, as will be described below. For the transitions between the stable

states, we must construct trajectories from one basin to another. These paths can

be computed by considering the path-integral approach to the stochastic process, as

will be discussed below. Once the functions S(a)

0

(x) have been evaluated, we want to

combine these objects in such a way that we create a landscape over all of the basins

of attraction, which spans the full domain. To do this we match at the S
(a)

0

(x) at the

separatrix [157]. This means we must shift the S(a)

0

(x) up or down by an additive con-

stant. This is analogous to matching potential wells, and hence the matched function

S
0

(x) is like a potential landscape. In large deviations theory, the quantity S
0

(x) is

called the quasi-potential. We explore this link further in this section. The stationary

distribution of the process is then characterised by S
0

(x), i.e. ⇢st(x) ⇠ exp[�⌦S
0

(x)].

Characteristic solutions

To obtain the solutions of the Hamilton–Jacobi equations, we construct a 2d-dimensional

space (x
1

, . . . , x
d

; ⇡
1

, . . . , ⇡
d

). The functionH(x,⇡) = 0 [either Eq. (6.35) or Eq. (6.37)]

specifies a 2d � 1-dimensional surface in this space [155]. We want to find the values

of ⇡ which satisfy H = 0. We define these values as p(x) = rS
(a)

0

(x). We can use

the method of characteristics to identify each p
i

(x). As dH/dx
i

= 0 on the surface

H = 0, we can write

dH

dx
i

=
@H

@x
i

+
X

j

@H

@⇡
j

@p
j

@x
i

=
@H

@x
i

+
X

j

@H

@⇡
j

@p
i

@x
j

= 0. (6.38)

In the last step we have used @p
j

/@x
i

= @2S
(a)

0

/@x
i

@x
j

= @p
i

/@x
j

.

We can construct a surface ⇡
i

= p
i

(x) in the d+1-dimensional space (x
1

, . . . , x
d

, ⇡
i

) =
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⇤
i

. A normal to this surface in the space ⇤
i

is
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d
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@

@⇡
i

◆

⇥

p
i

(x) � ⇡
i

⇤

=
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@p
i

@x
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i

@x
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. (6.39)

A tangent vector along this surface,  (i)

k , satisfies

0 =  (i)

k · (i)

? =
d

X

j=1

h

 
(i)

k

i

j

@p
i

@x
j

�
h

 
(i)

k

i

d+1

. (6.40)

We can then use Eq. (6.38) to see that the components

h

 
(i)

k

i

1jd

=
@H

@⇡
j

,
h

 
(i)

k

i

d+1

= �@H
@x

i

, (6.41)

fulfil the orthogonality condition between the normal and tangent vectors. The vector

 (i)

k describes the characteristic curves along the surface ⇡
i

= p
i

(x), and this holds for

all 1  i  d. If these characteristic curves are parametrised by s, they satisfy the

di↵erential equations

dx
i

ds
=
@H

@⇡
i

,
dp

i

ds
= �@H

@x
i

, (1  i  d). (6.42)

These are the familiar Hamilton’s equations which describe characteristic curves along

the H = 0 surface [146]. From this S(a)

0

(x) can be found,

dS(a)

0

ds
=

d

X

i=1

@S
(a)

0

@x
i

dx
i

ds
=

d

X

i=1

p
i

dx
i

ds

) S
(a)

0

(x) =

Z

d

X

i=1

p
i

dx
i

ds
ds =

Z

p · dx. (6.43)

Therefore the value of S(a)

0

(x) is given by the integral of the field p along the char-

acteristic trajectories (6.42), which are bound to the surface H = 0. For now we will

define S
(a)

0

(x⇤
a

) = 0, which is equivalent to having all trajectories start at the stable

state x⇤
a

.

Aside: We note that r
p

H(x,0) recovers the deterministic equations of motion,

r
p

H(FPE)(x,0) = A(x) =
dhxi
dt

, (6.44a)

r
p

H(ME)(x,0) =
X

r

⌫
r

f
r

(x) =
dhxi
dt

. (6.44b)
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Hence it is convenient to replace the parameter s with the time t, and dx
i

/ds with ẋ
i

.

This apparent equivalence of s and t is coincidental; there is no time in Eqs. (6.35)

and (6.37). As a counter-example to the equivalence, one could consider scaling all

reaction rates in the master equation (6.36) by a constant factor k. This factor would

appear in the mean-field dynamics, but could be removed from H, such that s and t

no-longer coincide.

Path-integral formulation

The Hamilton–Jacobi equations (6.35) and (6.37) are not unique to the WKB formal-

ism. The same functions can be recovered by considering the path-integral approach

to the processes described by the master equation (6.36) and the Fokker–Planck equa-

tion (6.32). As described below, the functions (6.35) and (6.37) also characterise the

probability density of trajectories, and can in turn lead us again to the discussion of

the ‘most-likely path’.

Continuous process:

The Fokker–Plank equation (6.32) describes the continuous stochastic process that is

given by the (Itō) stochastic di↵erential equation

ẋ = A(x) +G(x) · ⌘(t), (6.45)

where the noise correlation matrix satisfies G ·GT = "B, and ⌘(t) are Gaussian white-

noise variables which satisfy

h⌘
i

(t)i = 0, h⌘
i

(t)⌘
j

(t0)i = �
i,j

�(t � t0). (6.46)

Again we are using the small parameter " to characterise the noise strength.

To define a ‘path’ it is natural to consider a discrete-time approach, where time

is divided into steps of length �. At time t, the state of the system is given by

x
t

= (x
1,t

, x
2,t

, . . . , x
d,t

)T, where d is the dimension of our system, i.e. the number of

stochastic variables. We use subscripts, x
t

, to distinguish the discrete-time variables
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from the continuous-time variables, x(t). We can represent the discrete-time SDE by

using the Euler–Maruyama8 numerical integration scheme [74],

x
t+�

= x
t

+�A(x
t

) +
p
�G(x

t

) · ⌘
t

. (6.47)

Here ⌘
t

is the discrete-time analogue of ⌘(t), i.e. it is a d-dimensional vector of

independent Gaussian random numbers of unit variance. The correlation of the noise

between species is contained in the matrix G.

A path in discrete-time can be defined as the set {x} = {x
0

,x
�

, . . . ,x
T

}, where T
is the final time. As each x

i

(1  i  d) is a continuous variable, the probability to

observe a specific path {x} is zero. We can, however, use Eq. (6.47) to define a path

density,

P⇥{x}⇤ =
Z

Y

t

d⌘
t

�
h

x
t+�

� x
t

� �A(x
t

) �
p
�G(x

t

) · ⌘
t

i

P [⌘
t

], (6.48)

where P [⌘
t

] is the joint probability distribution function of the Gaussian variables ⌘
t

,

which can be factorised as the ⌘
i,t

are independent. To evaluate the path density we

introduce the auxiliary field ex such that we can express the delta-functions in their

exponential representation,

P⇥{x}⇤ =
Z

Y

t

dex
t

d⌘
t

(2⇡)d
exp

n

iex
t

·
h

x
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� x
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� �A(x
t

) �
p
�G(x

t

) · ⌘
t

io

P [⌘
t

].

(6.49)

The integral over the noise variables at each time-point can be evaluated to give

Z

d⌘
t

exp
h

i
p
�ex

t

· G · ⌘
t

i

P [⌘
t

] =

Z
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= exp
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· B · ex
t

�

, (6.50)

and hence we can write Eq. (6.49) as

P⇥{x}⇤ =
Z

Y

t

dex
t

(2⇡)d
exp

⇢

iex
t

·


x
t+�

� x
t

� �A(x
t

) +
i

2
"�B(x

t

) · ex
t

��

. (6.51)

8Leonhard Euler (1707–1783) and Gisiro Maruyama (1916–1986).
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We can now restore the continuous-time limit,� ! 0. We define lim
�!0

Q

t

dex
t

/(2⇡)d =

Dex, and using
Q

t

exp(·) = exp(
P

t

·) we can write the path probability density as

P⇥{x}⇤ =
Z

Dex exp

⇢

i

Z

T

0

ex ·


ẋ � A(x) +
i

2
"B(x) · ex

�

dt

�

. (6.52)

We can now define the probability density that the system reaches a point x
T

at

time t = T , given that it started at x
0

at time t = 0. This is achieved by summing over

all possible paths that meet these boundary conditions. We write this path integral

as [165]

P⇥x
T

, T |x
0

, 0
⇤

=

Z

xT

x0

Dx P⇥{x}⇤. (6.53)

This is now a probability density in the space of endpoints, x
T

. Through a relabelling

of the auxiliary field, ex = ip/", this density is given by

P⇥x
T

, T |x
0

, 0
⇤

=

Z

xT

x0

DxDp exp

⇢

�"�1

Z

T

0



p · ẋ � p · A(x) � 1
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p · B · p
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DxDp exp
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�"�1

Z

T

0

⇥

p · ẋ � H(FPE)(x,p)
⇤

dt

�

. (6.54)

Jump process:

For the master equation we can construct a similar path-based solution. By following

the work of Ref. [175], we can construct the probability of observing a path by approx-

imating the discrete dynamics as a series of Poisson-distributed jumps in discrete time.

This is the process described by the tau-leaping stochastic simulation algorithm [176].

If the state of the discrete population at time t is given by n
t

= (n
1,t

, n
2,t

, . . . , n
d,t

)T,

then the state at time t+� is described by

n
t+�

= n
t

+
X

r

⌫
r

k
r,t

, (6.55)

where k
r,t

is a Poisson-distributed random variable with mean �
r,t

= T ⌫r
nt
�. The

k
r,t

represent the number of jumps of reaction r that occur in a time-step �. As

the state-space of n
t

is discrete, we can define the probability of observing the path

{n} = {n
0

,n
�

, . . . ,n
T

}. This probability is given by

P
⇥{n}⇤ =

Y

t

X

kt

�

"

n
t+�

� n
t

�
X

r

⌫
r

k
r,t

#

P [k
t

], (6.56)
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where P [k
t

] is the joint probability distribution of the Poisson random variables k
t

,

which can be factorised as the k
r,t

are independent. Note that the vector k
t

has

elements labelled by the reaction index r, as opposed to the variable index i. The sum

over k
t

represents
P1

k1,t=0

P1
k2,t=0

· · · .
We now switch to the continuous variable x = n/⌦, and introduce the auxiliary

field ex. We are still considering a discrete-time process, but the continuous state-

space means we need to again consider the probability density of the path {x} =

{x
0

,x
�

, . . . ,x
T

}. We write this density as
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]. (6.57)

Now separating the terms which are dependent on the k
r,t

, and inserting the Poisson

probability distributions P [k
t

], we have
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Substituting this expression back into Eq. (6.57) we obtain

P⇥{x}⇤ =
Y

t

Z

dex
t
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exp
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. (6.59)

We can now restore the continuous-time limit. Again we define lim
�!0

Q

t

dex
t

/(2⇡)d =

Dex, such that we can write

P⇥{x}⇤ =
Z

Dex exp

(

Z

T

0

"

iex · ẋ+
X

r

⌦f
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(x)

✓
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◆

#

dt

)

, (6.60)

where we have used �
r,t

= T ⌫r
nt
� ! ⌦f

r

(x
t

)�.

We can now define the probability density in the space of end points. That is the

probability that we find the system at state x
T

at time t = T given it was started at
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state x
0

at time t = 0. This quantity is given by Eq. (6.53). Substituting Eq. (6.60)

into Eq. (6.53), and relabelling the auxiliary field ex = i⌦p, gives

P⇥x
T

, T |x
0

, 0
⇤

=
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xT

x0

DxDp exp

(
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f
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(x) (ep·⌫r � 1)

#

dt

)
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xT
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DxDp exp

⇢

�⌦

Z

T

0

⇥

p · ẋ � H(ME)(x,p)
⇤

dt

�

, (6.61)

which is of the same form as Eq. (6.54).

The functionH(ME)(x,p) (or its Fokker–Planck equivalent) characterises the proba-

bility of observing a path. Using the saddle-point approximation of the path-integral (6.61)

[or Eq. (6.54)], we can define the most-likely path between the points x
0

and x
T

as

the path, ({x}, {p}), which minimises S[({x}, {p})] = R

T

0

[p · ẋ � H(x,p)] dt. This

path is embedded in space and time, such that its relation with the most-likely paths

in Secs. 6.2 and 6.4 is not entirely obvious.

The function S[({x}, {p})] is referred to as the ‘action’ of the path, as this formal-

ism is very similar to the description of classical mechanics [146]. For ({x}, {p}) to be

the most-likely (minimum-action) path, it should satisfy

�S = S[({x+ �x}, {p+ �p})] � S[({x}, {p})] = 0, (6.62)

where �x and �p are small, independent perturbations to the path. Evaluating the

above function shows that the minimum-action paths are given by the solutions of

Hamilton’s equations, Eq. (6.42) [146]. Hence the characteristic curves obtained from

the WKB formalism are the most-likely paths between two states.

An alternative approach is to first extremise the action at each point along the

path with respect to p. This is a simple exercise in the Fokker–Planck framework,

from which we obtain

0 =
@

@p
i



p · ẋ � p · A(x) � 1

2
p · B · p

�

) 0 = ẋ
i

� A
i

(x) � B
i,j

p
j

) p = B�1 · [ẋ � A(x)] . (6.63)

Substituting this value back into the action gives
Z

T

0

⇥

p · ẋ � H(FPE)(x,p)
⇤

dt =
1

2

Z

T

0

[ẋ � A(x)] · B�1 · [ẋ � A(x)] dt, (6.64)
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where the integrand is the Onsager–Machlup9 functional [177]. From the SDE (6.45),

we recognise this as an integral over the noise variables. Along the deterministic paths,

where ẋ = A(x), the action is zero. Such treatment is not possible analytically in the

case of the master equation, but we will describe a numerical method which directly

minimises this action by solving the associated Euler–Lagrange equations [165].

Large deviations theory

Large deviations theory is the field of mathematics concerned with the analysis of rare

events and statistical outliers [165]. The application of this field to stochastic pro-

cesses is described in Ref. [164]. The aim of this approach is to construct exponential

estimates for the probability densities to observe paths between two states (not neces-

sarily stable states). If we have a continuous path '(t), then the probability density

to observe a simulation path X
⌦

(t) that is within the �-tube of this path is given by

Pr

✓

sup
0tT

|X
⌦

(t) �'(t)| < �

◆

⇠ f(�) exp (�⌦S[']) . (6.65)

Here the function f(�) is often ignored, as we are only concerned with the exponential

approximation, and S['] is known as the large deviations rate functional [165]. The

Onsager–Machlup functional in Eq. (6.64) is the rate functional of the SDE (6.45)

[164, 165]. From Eq. (6.65), the most-likely path from '(0) = x
0

to '(T ) = x
T

must

minimise S['].

In the WKB formulation we have not specified the length of the path in terms of

the time, T . If we vary the length of the paths, we would expect the value of the

action to change, and hence it should have a minimum at some value of T . The most

likely path between two states, x
0

and y, then has action

V (x
0

,y) = inf
T

inf
'

{S['] : '(0) = x
0

, '(T ) = y} . (6.66)

This quantity measures the di�culty in moving from the point x
0

to the point y, and is

referred to as the quasi-potential [164]. This is equivalent to the action recovered from

the WKB formulation, S
0

(x) [147,165]. It is called a ‘quasi’-potential as this function

9Lars Onsager (1903–1976) and Stefan Machlup (1927–2008).
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is not additive; for distinct points x
0

, x
1

, and x
2

we have V (x
0

,x
2

)  V (x
0

,x
1

) +

V (x
1

,x
2

). This inequality becomes an equality only if x
1

lies on the most-likely path

between x
0

and x
2

.

The quasi-potential must be defined with respect to a reference state. If there

exists a stable fixed point in the deterministic dynamics, x⇤
a

, then we will often use

this point as the reference state for the quasi-potential, i.e. V (a)(x) = V (x⇤
a

,x).

Numerical methods

As described above, the quasi-stationary distribution about the stable state x⇤
a

is

characterised by the action S
(a)

0

(x) =
R

p · dx, where ({p}, {x}) is the most-likely

path between the stable fixed point x⇤
a

and the position x, where t parametrises the

curve. The paths are described by the characteristic equations (6.42). Obtaining S
0

(x)

thus reduces to solving a two-boundary-value problem, as we have an initial position

[x(0) = x⇤
a

, p(0) = 0] and a final position x(T ) = x. Solutions of this problem can be

obtained through the application of shooting methods or iterative schemes. A more

general approach is to directly minimise the action of the path integral by solving the

associated Euler–Lagrange equations. We now discuss these methods in turn.

Solutions of characteristic equations: Shooting methods are the conventional choice

of numerical method for solving boundary-value problems. The procedure is to turn

the boundary-value problem into an initial-value problem, which are much easier to

solve. One must then find the initial condition that generates the correct final bound-

ary condition [120]. The new initial condition is specified as a perturbation from the

fixed point x⇤
a

, i.e. we let x(�) = x⇤
a

+ �x, where � is a small time-step. In the

limit � ! 0 this condition is equivalent to specifying a condition for ẋ(0), provided

that �x scales suitably with �. A corresponding perturbation �p is specified and

with these conditions Hamilton’s equations (6.42) are forward-integrated to generate

a trajectory [58, 157]. Varying the initial perturbation allows us to generate multiple

trajectories across the domain. We can then find the action, S(a)

0

(x) =
R

p · dx, and
hence the quasi-stationary distribution about this stable state.
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The downfall of the shooting method, however, is that convergence to the correct

final boundary condition can be very slow. In fact, if the final boundary condition is a

saddle point, then it is very unlikely that shooting to such a point will be possible [157].

Furthermore, as the dimensionality gets higher it becomes increasingly di�cult and

ine�cient to find the target boundary condition.

An alternative approach to solving the boundary-value problem has been used in

Refs. [53,133,162,178]. Here the solution is found through an iterative scheme, where

the characteristic equations (6.42) for x are integrated forwards in time and the equa-

tions for p are integrated backwards in time. This method is straightforward to im-

plement and was described in Sec. 5.5. It does not su↵er from the same problems as

the shooting method. However, this method requires the final value of p, which is not

uniquely specified in d � 2 dimensions. If the final position is a stationary point of the

characteristic equations (6.42), then these can be solved to determine the boundary

condition, otherwise we are in trouble.

Numerical minimisation: Rather than trying to solve the integral problem as is

done in the shooting or iterative methods, a di↵erent approach is to solve the Euler–

Lagrange equations that define the minimum-action path. This can be achieved

through relaxation methods, such as the method of steepest descent [120]. A prob-

lem that is common to the above solution methods is the convergence of the equa-

tions of motion to a stationary point. By definition it takes infinitely long for de-

terministic equations to reach a stationary point, so for how long do we integrate

Eqs. (6.42)? The geometric minimum action method (gMAM) overcomes this prob-

lem by re-parametrising the path, in this case onto the interval [0, 1] [147]. Importantly

this method does not require any knowledge of the initial or final values of p, only

the position boundary conditions are needed. Details of this method are omitted from

this thesis due to its complexity, however it is extensively described in Ref. [147].
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6.6 Examples

Tunnelling example

We return to the problem discussed in Chapter 5 of the fixation of two mutations

in a fixed size population. We identified di↵erent dynamical regimes in that system.

In region I, when there existed a single stable state located on the boundary of the

domain, we were able to compute an analytical expression for the QSD. However, in

regions II and III when a fixed point existed in the middle of the domain, we could

determine the most-likely paths, but not the QSD across the state space. Using the

techniques developed in this Chapter, we are now in a position where we can compute

this distribution numerically. To do this we use the gMAM algorithm mentioned

above [147]. The results are shown in Fig. 6.9, where we plot the quasi-potential S
0

(x)

about the interior fixed point in regions II and III. The QSD, ⇢⇤(x) ⇠ exp[�NS
0

(x)],

can easily be inferred from these results as having a peak at the fixed point and steeply

dropping o↵ as the distance from the stable state increases. The most-likely escape

paths, which are the same as those plotted in Fig. 5.16 but obtained using the gMAM

algorithm, are seen to be orthogonal to the equipotential contours, validating the use of

the term ‘potential’. Numerical issues arise close to the boundaries of the concentration

simplex, when the system jumps from being two-dimensional to one-dimensional.

Toggle Switch

To further demonstrate the applicability of this theory, we will consider a two-dimensional

example which has multiple stable states and transitions between the di↵erent basins

of attraction. The example is that of the genetic toggle switch, which is one of the

archetypal problems used to demonstrate the WKB method and quasi-potential land-

scapes [161, 179–182]. We consider the minimal model which only describes the be-

haviour of the two types of protein, labelled 1 and 2. We assume that proteins degrade
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Figure 6.9. (a) The quasi-potential about the stable fixed point in region II for the cancer
initiation model, along with the dominant escape path from the interior stable state to the
1–2 boundary. Parameters are r

0

= 1.00, r

1

= 0.98, r

2

= 0.95, and u

1

= u

2

= 10�2. (b) The
quasi-potential about the stable fixed point in region III, along with the dominant escape
path from the interior metastable state to the absorbing state. Parameters are r

0

= 1.00,
r

1

= 0.95, r

2

= 0.98, and u

1

= u

2

= 10�2. In (a) and (b) the contours are a multiplicative
factor of

p
2 apart, such that every two contours corresponds to a doubling of the quasi-

potential. Equal contour levels are used in each panel.

at a constant rate, and they are produced at a rate that is dependent on the pres-

ence of the other protein through mutual inhibition. This example is described by the

following reaction scheme:

1 ! ;, T
(�1,0)

(n1,n2)
= �

0

n
1

, (6.67a)

2 ! ;, T
(0,�1)

(n1,n2)
= �

0

n
2

, (6.67b)

; ! 1, T
(+1,0)

(n1,n2)
= ⌦

↵r

1 + (n
2

/⌦)h
, (6.67c)

; ! 2, T
(0,+1)

(n1,n2)
= ⌦

r

1 + (n
1

/⌦)h
, (6.67d)

where �
0

is the protein degradation rate, r is the basic production rate, and the

Hill coe�cient h determines the shape of the inhibition function. The system size

is ⌦, which determines the typical protein number. We set the parameter �
0

= 1

throughout, which corresponds to a rescaling of time. The parameter ↵ allows us to

introduce some asymmetry into the problem. We choose the parameter r such that

there exists two stable states in the deterministic dynamics. One of these stable states,

x⇤
1

, has a low concentration of protein 1 and a high concentration of protein 2, and

vice-versa for the other stable state x⇤
2

, where x = (n
1

, n
2

)T/⌦. There is a separatrix
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Figure 6.10. (a) Quasi-potential in the symmetric toggle-switch (↵ = 1), along with the
most likely path from each stable state to the other. The quasi-potential is symmetric about
the separatrix x

1

= x

2

, so we only show one half of it. The gray lines in right-hand side are
the streamlines of the deterministic flow. (b) Quasi-potential in an asymmetric toggle-switch
(↵ = 0.85), along with the most-likely transition paths. The thick black line is the separatrix
between the basins of attraction. In (a) and (b) the contours are a multiplicative factor ofp

2 apart, such that every two contours corresponds to a doubling of the quasi-potential.
Equal contour levels are used in each panel. Remaining model parameters are �

0

= 1, r = 2,
h = 3.

between the basins of attraction, and there exists a saddle point on this boundary at

x
s

.

To determine the quasi-potential landscape in this system, we first need to find the

values of S(a)

0

(x) for each of the stable states. For this we use the gMAM algorithm.

We then match these actions at the saddle point to generate the quasi-potential S
0

(x),

which satisfies [157]

S
0

(x) = min

8

<

:

S
(1)

0

(x),

S
(2)

0

(x) + S
(1)

0

(x
s

) � S
(2)

0

(x
s

).
(6.68)

We plot examples of this quasi-potential in Fig. 6.10. In panels (a) and (b) of Fig. 6.10,

we can see that the most-likely transition paths pass through the saddle point in

between the basins of attraction. Once the path has crossed the saddle point, it follows

the deterministic trajectory to the stable state. Again we see that the escape paths are

orthogonal to the equipotential lines. In the asymmetric toggle-switch in Fig. 6.10(b),

we see that the stable state x⇤
1

to the left of the separatrix has a ‘deeper potential well’
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than x⇤
2

. Considering the stationary distribution, ⇢st(x) ⇠ exp[�NS
0

(x)], there is a

much higher probability to be found close to the state x⇤
1

, as opposed to the stable

state x⇤
2

.

6.7 Summary

The WKB method is a very powerful technique that has been used to describe fixa-

tion and equilibration across a wide-variety of stochastic models, in particular when

describing the statistics of rare-events such as extinction. However, there has been

a lack of consistency across multiple disciplines when describing this approach. This

includes the work of this PhD student. In this Chapter we have returned to the math-

ematical basis of the WKB method in the hope of clearing up the ambiguities in the

terminology, and we have provided a tutorial-style walk-through of how we can apply

the method to stochastic processes.

Through the use of toy models we have reintroduced the concepts of the quasi-

stationary distribution and the most-likely path between two states. While the QSD

has a rigorous mathematical definition, the most-likely path is a much more subtle

concept. Along with the path, we must also specify the ensemble in which this path

resides. In Sec. 6.2, we identify a hierarchy of three ensembles with varying complexing

for a simple individual-based model. The first space of trajectories contains the full

information about the transitions, including the time spent at each state. This is

the most complex space with an uncountable set of trajectories where we can only

define path densities. This object is useful in the path-integral or large-deviations

frameworks, but does not help with the practitioner’s intuition. If we only consider the

states of the system by marginalising over the time, then we can define the ensemble

as all paths which start at stable point in the state-space and reach an absorbing

boundary. However, there is large degeneracy in this space because paths often return

to the stable state. By imposing the condition that the system does not return to

the stable state, we can construct a much smaller space of paths and easily attribute

weights to the associated trajectories. It is not wrong to define the most-likely path
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in the other spaces, but the definition is more clear in this smaller space.

To introduce the mechanics of the WKB method, we first focussed on processes

with a single stochastic variable in Sec. 6.3. We discussed the approach used to anal-

yse continuous stochastic processes described by a Fokker–Planck equation, and the

familiar discrete jump processes described by a master equation. We considered both

frameworks to make contact with the literature from both of these fields, and to show

the similarities, and most importantly the di↵erences, between these approaches to

modelling a system. In these one-dimensional systems we are able to obtain explicit

expressions for the quasi-stationary distributions.

In a one-dimensional system, it was easy to show that the most-likely path from a

stable state to an absorbing boundary is the path which does not step ‘backwards’, in

the sense that the system always moves away from the stable state (it is easy provided

that we know what we are talking about!). In the scenario where there are multiple

‘forward-only’ paths to the absorbing boundary (or to another stable state), as is found

in higher-dimensional systems, then we again need to define the most-likely path. In

Sec. 6.4, we use a four-state toy model to illustrate this definition. We are also able

to calculate the quasi-stationary distribution in this system.

For stochastic processes featuring a larger number of stochastic variables (d � 2),

analytical progress in the WKB framework is often not possible. Even in the absence of

tractability, the WKB method illuminates the problem and provides a large amount of

information by mapping the problem from a stochastic process to classical mechanics.

Applying the WKB method allows us to construct quasi-stationary distributions about

the stable states of the underlying model. These distributions are described by an

‘action’, which can be derived from the path-integral framework. This approach also

shows that characteristic equations obtained form the WKB method describe most-

likely paths between two states. The action is also closely related to the quasi-potential

described in the theory of large deviations [164]. A variety of numerical methods have

been proposed to extract the quasi-potential and the most-likely paths, and examples

of these quantities are shown in Sec. 6.6.
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The WKB approach greatly improves on the ‘traditional’ methods of analysis of

individual-based systems, which include direct numerical integration of the master

equation or using di↵usion approximations. Integration of the master equation can be

very ine�cient; each point in state-space has an associated equation, and the complete

set of equations need to be integrated in parallel as they are coupled. Also, as we are

often interested in rare events, this integration must be carried out for a long time.

At the end of this integration we are left with a description of only a single point

in parameter space, with no knowledge of how the system behaves in the vicinity of

this point. Di↵usion approximations can reduce the large set of master equations to

a partial di↵erential equation, which greatly improves the tractability. However, this

approach only yields accurate results for the bulk of the probability distribution, and

the Fokker–Planck equation fails to describe rare events which are characterised by

the tails of the distribution. The WKB method captures these large deviations from

the expected behaviour, providing insight into events such as extinction, fixation and

equilibration.
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Chapter 7

Conclusions

7.1 General discussion

This thesis has been concerned with the phenomena of fixation and equilibration in

stochastic, individual-based processes. Fixation, which is often a consequence of the

extinction of one or more types of individual within a population, is an important as-

pect of biological systems, particularly in the field of population genetics from where

the term originates. Many systems exhibit fixation (or extinction), such as the disap-

pearance of a disease, the spreading of an opinion, or the propagation of mutated cells

through a tissue. Equilibration, on the other hand, describes the process of reaching

a steady state. These stationary systems often arise when types of individuals are

constantly reintroduced through mutations, for example, or through adopting novel

strategies. These two features can be closely related. In systems where fixation takes

a long time, the population will first relax to a so-called metastable state. In this

thesis these features have been analysed in a range of applications: From simple one-

dimensional birth–death processes describing the interaction of two strategies in an

evolutionary game, to a two-dimensional model describing the accumulation of muta-

tions during the initiation of cancer. The impact that a switching environment has on

the evolutionary dynamics of a population has also been investigated.

195
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The analysis of these systems is carried out using the tools and techniques of statis-

tical mechanics. Here knowledge of the underlying microscopic dynamics on the level

of the individual has been used to make predictions about the macroscopic outcomes

at the population level. Through the analytical characterisation of the evolutionary

dynamics that are observed in stochastic processes, we have obtained a greater un-

derstanding of fixation and equilibration. For the majority of this thesis we have not

focused on a specific application, instead we have been concerned with constructing

generic mathematical frameworks to analyse the evolutionary processes. The appli-

cation of these techniques is then illustrated through some popular examples. Often

the focus has been on evolutionary game dynamics, which describe the interaction

of competing strategies. These scenarios demonstrate the richness of dynamical be-

haviours that can be seen in these models, such as coexistence and bi-stability. We

have also explored examples of individual-based models that describe some specific

biological processes, such as a genetic toggle-switch or the initiation of cancer. The

accompanying analytical treatment of these models has been presented in as general a

framework as possible, such that these techniques are readily transferable to di↵erent

systems.

7.2 Summary of results

Finite populations in switching environments

Models, and the underlying system that they represent, can contain additional levels

of complexity that go beyond just the dynamics of the individuals. In Chapter 3 we

investigated the impact of a stochastically switching environment on the evolutionary

dynamics of a two-species population. Such systems are relevant when environmental

changes occur on roughly the same timescale as the population dynamics, as is the

case when bacteria are repeatedly exposed to antibiotics [99]. We were able to extend

the existing methods used to describe fixation and extinction in birth–death processes

to account for this extra stochasticity. Applying these results to evolutionary games,
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where di↵erent environments favour di↵erent strategies, we observed combinations of

switching rates for which the mutant was more successful in the switching environ-

ment than in either of the fixed evolutionary games. This non-trivial result can be

explained by considering the interplay between the selection e↵ect of the environment

and the external noise. Equilibration was also investigated in this model. We intro-

duced mutations in the dynamics, such that the individuals can randomly switch their

strategy, and successfully predicted the resulting stationary states. This work provides

a first mathematical characterisation of the e↵ects one may expect in systems that are

subject to selection, mutation, demographic stochasticity and external randomness.

Fixation time distributions in birth–death processes

In Chapter 4 we questioned whether the mean fixation time is a good description of

the overall fixation statistics in a birth–death process. To answer this we computed the

exact fixation time distributions. This was achieved by evaluating the spectrum of the

master equation describing the process, and we considered the dynamics in eigenspace.

Applying this method to some typical scenarios from evolutionary game theory, we

observed that fixation time distributions can be broad and skewed, especially in the

coexistence game where a heterogeneous population is favoured by selection. Along

with the exact representations of the fixation time distributions, we produced expo-

nential processes that permit e�cient sampling from these distributions. These have

the potential to be used as a very e↵ective model-reduction tool. When rare mutations

were introduced into the dynamics, we were able to establish a relation between the

mixing time to stationarity and the median time to fixation in the limit of vanishing

mutation rates (in the right circumstances). No such relation had previously been

investigated.

Metastable states in a model of cancer initiation

In Chapter 5 we turned our attention to a well-studied model that describes the

accumulation of two mutations in a tissue during the initiation of cancer. Previous
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studies had been restricted to the regions of parameter space which permitted a coarse-

graining approach to reduce the complexity of the problem. Through analysis of the

deterministic equations of motion, we identified parameter regimes where this approach

is not valid because of the existence of quasi-equilibria, or metastable states. It is in

these regimes that we applied the WKB method, a technique from mathematical

physics that relies on the interplay of fixation and equilibration. In these systems with

metastable states, there exists a separation of timescales. The system quickly relaxes

to a quasi-stationary distribution, but fixation only occurs on a longer timescale. We

were able to exploit this separation to compute the quasi-stationary distribution about

the metastable state, and then we could use this to compute the expected fixation

time. When the system reduced to one dimension (a consequence of having absorbing

boundaries at the edge of our state space) we obtained closed-form expressions for

the quasi-stationary distribution and the mean fixation time. If the system does not

reduce to one dimension, we rely on numerical methods to extract the fixation time

statistics.

Through our analysis we identified that the phenomenon of stochastic tunnelling

is, in fact, a deterministic e↵ect. Tunnelling is the process that describes how a ho-

mogeneous population of wild-type cells can evolve into a homogeneous population

of cells with two mutations without visiting the state in which all cells harbour only

one mutation [34]. Furthermore, our analysis identified the escape from the metastable

states as the key bottleneck to fixation of cells with two mutations. For parameter val-

ues for which there are no metastable states (i.e. when cells with two mutations have

the highest fitness, as would be expected from the inactivation of an oncogene [122]),

the fixation dynamics is largely governed by the deterministic flow. The rate-limiting

steps are then the appearance of successful mutant lineages [47], and the subsequent

fixation of cells with two mutations is a zero-hit process for large population sizes.

As such the progression from healthy tissue (no mutations) to susceptible tissue (two

mutations, corresponding to an inactivated tumour suppressor gene) will be fast rela-

tive to the cases in which a metastable state exists. If there is one stable fixed point
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in the deterministic dynamics, the process becomes a one-hit phenomenon limited by

the escape from the corresponding metastable state. In regions with two fixed points

one observes a two-hit process; the population becomes trapped in a first metastable

state, escapes to a second metastable state, and then reaches full fixation. Our anal-

ysis allowed us to classify how changes to the fitness landscape, mutation rates, and

population size a↵ect the fixation time of cells harbouring two mutations, as well as

the probability of tunnelling.

In terms of the development of tumours, our analysis shows that the path to accu-

mulating mutations is not simply limited by the mutation rates, but also by the escape

from metastable states. Populations can exist in a heterogeneous state for very long

periods of time before fluctuations eventually drive the second mutation to fixation.

The probability with which stochastic tunnelling occurs is, in part, determined by the

location of these metastable states. If they are located close to the homogeneous state

with all cells harbouring one mutation, then the probability of tunnelling is low. This

work has filled the gap left by the existing literature and leads to a more compre-

hensive understanding of mutation acquisition and stochastic tunnelling in evolving

populations.

The WKB method

We used the WKB method as an ‘o↵ the shelf’ tool to analyse this model of mutation

acquisition. In conducting this study we found inconsistencies and confusion among

the existing literature, and this prompted further investigation into the origins of this

method. In Chapter 6 we took a closer look at the WKB method. We explored the

mathematical basis of this approach, and illustrated the di↵erent constructs that arise

when it is applied to stochastic systems. Through toy models and some well-studied

systems, we demonstrated the meaning of the multitude of terms that come from this

field, as well as making connections with the related path-integral formulations and

the theory of large deviations. We discussed the di↵erent numerical methods that can

be used to solve these problems, and gave examples of the quasi-potential landscapes
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that can be computed.

The WKB approach improves on the ‘traditional’ methods of analysis of individual-

based systems; numerical integration of the master equation can be very ine�cient and

di↵usion approximations only yield accurate results for the bulk of the probability

distribution, failing to capture the rare events which are characterised by the tails. By

mapping the problem from the intractable stochastic process to classical mechanics, the

WKB method provides some much-needed intuition about the population dynamics in

systems described by a large number of random variables. This approach captures the

large deviations from the expected behaviour, which play a crucial role in describing

events such as extinction or switching between metastable states.

7.3 Outlook

Through these investigations we hope to have promoted the benefits of analytical and

semi-analytical methods. In this age of burgeoning computer power, the temptation to

rely on simulations alone is huge. But analytical approaches can greatly complement

this data, allowing us to identify the crucial components of a model that give rise

to observed phenomena. They also allow us to extrapolate to inaccessible parameter

regimes, such as large system-sizes, and highlight possible parameter combinations

where interesting e↵ects may be observed. They can even tell us what we need to look

for in the experimental or computational data; measuring a most-likely path from

simulation data would be very tricky without prior knowledge of what that object is.

Analytical treatments can also lead us to more e�cient simulation procedures. For

example, in this thesis we have documented how mathematical manipulation of the

master equation describing the birth–death process allows us to sample arrival times

much faster than with direct simulations alone.

On a more general level, constructing a mathematical theory of evolutionary dy-

namics is very much work in progress. Nature is inherently discrete and stochastic,

and fluctuations must be taken into account when trying to understand these systems.
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An integral part of the evolution of microbes and higher organisms alike is frequency-

dependent selection [40–42], as found in evolutionary games. At the same time external

factors determining the detailed mechanics of selection may vary throughout the du-

ration of the process. In this thesis we have combined frequency-dependent selection,

fluctuating environments, and stochastic dynamics in discrete populations into a single

model, and we have provided the analytical tools for its analysis. This, we hope, is a

contribution toward a more complete understanding of evolutionary processes.

The work presented in this thesis can be further developed in many ways. Individual-

based processes can be used to describe systems from a broad range of disciplines, and

the list of possible applications is endless. The methods that we have developed, which

include tools that can handle additional sources of stochasticity and a solid framework

for applying the WKB approach, now allows us to analyse more models than ever

before.

Evolution in a changing environment is a current topic of great interest. The field

of evolutionary rescue is dedicated to describing how populations adapt to sudden

change [183], as observed when the environment switches its state. We expect that

the theoretical framework discussed in Chapter 3 could be used to describe these

scenarios, which arise, for example, when drugs are administered to fight diseases or

infections, or when ecological niches are disturbed through anthropogenic e↵ects.

We are currently in the era of ‘big data’, and as such we are surrounded by the

results of experiments, surveys, and numerical simulations. Studies often report only

the mean statistics of these data, and maybe the associated standard deviation. As

the volume of data grows, analysing the full distribution becomes more interesting and

meaningful. The method discussed in Chapter 4 describes the first derivation of exact

distributions in scenarios from evolutionary game theory. We see this as a leap forward

in analytical predictions, and we expect to see these techniques become increasingly

popular when describing evolutionary processes.

In some situations, it takes somebody from outside a field to provide new insights.

The influence of physicists is felt across a range disciplines, mostly for the right reasons.
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Sometimes we must depart from the traditional line of thinking and consider new

approaches. Our investigation of the well-studied cancer initiation model is an example

of this. The role of physics in the investigation of cancer is stronger than ever, and is

likely to increase as we seek a more complete understanding of this disease. Extending

our model to investigate the dynamics of the system beyond the second mutation, or

the emergence of a cancerous phenotype prior to fixation, are likely directions for the

future of our work.

On a personal level the work presented in this thesis, and in particular the modelling

of cancer in Chapter 5, has fuelled my passion to study biologically-motivated models.

Using the techniques of statistical physics, I hope to obtain further insights into these

fundamental processes of evolution and population dynamics. While doing so I will

be flying the flag for the analytical methods of maths and physics.
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