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The timing of transmission plays a key role in the dynamics and controllabil-
ity of an epidemic. However, observing generation times—the time interval
between the infection of an infector and an infectee in a transmission pair—
requires data on infection times, which are generally unknown. The timing
of symptom onset is more easily observed; generation times are therefore
often estimated based on serial intervals—the time interval between symp-
tom onset of an infector and an infectee. This estimation follows one of
two approaches: (i) approximating the generation time distribution by the
serial interval distribution or (ii) deriving the generation time distribution
from the serial interval and incubation period—the time interval between
infection and symptom onset in a single individual—distributions. These
two approaches make different—and not always explicitly stated—assump-
tions about the relationship between infectiousness and symptoms, resulting
in different generation time distributions with the same mean but unequal
variances. Here, we clarify the assumptions that each approach makes and
show that neither set of assumptions is plausible for most pathogens. How-
ever, the variances of the generation time distribution derived under each
assumption can reasonably be considered as upper (approximation with
serial interval) and lower (derivation from serial interval) bounds. Thus,
we suggest a pragmatic solution is to use both approaches and treat these
as edge cases in downstream analysis. We discuss the impact of the variance
of the generation time distribution on the controllability of an epidemic
through strategies based on contact tracing, and we show that underestimating
this variance is likely to overestimate controllability.
1. Background
1.1. Motivation
Estimating the generation time (the timing between successive infections in a
transmission chain) distribution in an emerging epidemic is both extremely
important and extremely challenging. Generation time is key to assessing the
controllability of the epidemic: it determines the relationship between the
basic reproductive number R0 and the epidemic’s growth rate [1,2], as well as
how much delays in the isolation of infected individuals impede epidemic con-
trol [3,4]. However, the timing of transmission events is often unknown. The
distribution of generation times is therefore typically estimated based on the
timing of symptom onset, which requires assumptions about the relationship
between infectiousness and symptoms. These assumptions are not always
explicitly stated and their plausibility is rarely discussed. Here, we illustrate
how assumptions about infectiousness and symptom onset affect the relation-
ship between the generation time and serial interval distributions, and the
implications this has for assessing epidemic controllability.
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Figure 1. A schematic of how the assumptions about infectiousness and symptoms affect the relationship between the serial interval and generation time distributions.
(a) Definitions of: serial interval Sij, time from symptom onset of infector i to symptom onset of infectee j; generation time Gij, time from infection of i to infection of j;
incubation time Ii, time from infection of i to symptom onset of i; and Pij, time from symptom onset of i to infection of j. (b) Illustration of how infectiousness relates to
the point of infection and onset of symptoms under the two different assumptions. Under assumption 1 (Pij and Ii independent), the infectiousness is fixed with
reference to symptom onset. Under assumption 2 (Gij and Ii independent), the infectiousness is fixed with reference to the point of infection. (c) The relationship
between the generation time distribution, the infectiousness profile and the serial interval distribution under assumptions 1 and 2.
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1.2. Definitions
We consider an infector i and infectee j (figure 1a) and define:
Sij as the serial interval (time interval between symptom
onset of infector i and symptom onset of infectee j); Gij as
the generation time (time interval from infection of i to infec-
tion of j); Pij as the time interval from symptom onset of i to
infection of j; and Ii as the incubation period of i (and Ij is the
incubation period of j). For clarity, we drop the indices when
they are not necessary. We use calligraphic letters to denote
the probability density functions—i.e. distributions—of
these time variables (e.g. S is the serial interval distribution).
The generation time distribution G describes infectiousness
relative to the point of infection, while P describes infectious-
ness relative to symptom onset. We refer to P as the
infectiousness profile [5,6].
1.3. Estimation based on transmission pairs
The distributions I , G, P and S are typically derived from con-
tact tracing data during epidemic outbreaks. Such data consist
of transmission pairs, usually with symptom onset times for
infector and infectee, and an exposure window for the infec-
tion time of the infectee. These data allow I and S to be
estimated without further assumptions, but not P and G.

Here, we note some general caveats relating to the use of
transmission pairs to estimate these distributions. These are
not relevant to the relationship between G and S discussed
here, but should nevertheless be considered when working
with these data. Firstly, in a growing epidemic, contact tracing
data will underestimate generation times and serial intervals:
when prevalence is increasing, sampled cases will be biased
towards recent infections. This bias can be corrected byexplicitly
accounting for thegrowthwhenderiving the distributions [2], as
done, for example, in Ferretti et al. [4]. Secondly, as prevalence
increases and the number of susceptible individuals becomes
limiting, generation times and serial intervals will contract:
each susceptible can only be infected once, resulting in fewer
longer intervals [7]. Thirdly, sampled transmission pairs may
not be representative of the overall population—for example,
asymptomatic cases will be under-represented. Furthermore,
contacts who are exposed to infection but not infected contrib-
ute information about infectiousness that is not captured in
these analyses.
2. Relationship between G, P and S
2.1. Deriving G and P from S
The relationships between the time intervals Gij, Pij and Sij are
illustrated in figure 1a and are captured by the following
equations:

Sij ¼ Pij þ I j, (2:1a)

Gij ¼ Pij þ Ii (2:1b)

and Gij ¼ Sij þ Ii � I j: (2:1c)

Deriving P from S does not require strong assumptions; Pij

and Ij are plausibly independent: it is reasonable to assume
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that the interval between the infector’s symptom onset and
onward transmission does not affect the incubation period
of the infectee. From equation (2.1a), we can then write S
as the convolution between P and I , i.e.

S ¼ P �I : (2:2)

The infectiousness profile P can therefore be derived by
deconvolution of the serial interval and incubation period
distributions [5,6].

Deriving G is not as straightforward: as the intervals Pij and
Ii relate to the same individual, independence of the two is a
more debatable assumption than for Pij and Ij. Progress can
be made by assuming that Ii and Ij are independent and iden-
tically distributed (i.i.d): under this assumption, the intervals S
and G have the same mean and their variances are related by
the covariance of Pij and Ii (from equations (2.1a,b)) [8]

Var(G) ¼ Var(S)þ 2Cov(Pij, Ii): (2:3)

Deriving the generation time distribution G requires further
assumptions: typically, either the independence of Pij and Ii
or the independence of Gij and Ii.

2.2. Assumption 1: independence of incubation period
of the infector (Ii) and time from symptoms of
infector to infection of infectee (Pij)

Under this assumption, infectiousness is fixed with reference
to symptom onset (figure 1b): there is no correlation between
how long it takes an individual to develop symptoms and the
interval between symptom onset and onward transmission.
Such a situation would arise, for example, if individuals
have a variable period between infection and the onset of
infectiousness, the duration of which does not affect sub-
sequent infectiousness or onset of symptoms (see also [2]).

Using equation (2.1b), the independence of Pij and Ii
means that G can be derived as the convolution of P and I
(i.e. G ¼ P � I ) and is thus identical to S (equation (2.2)).
Thus, the often-used approach of approximating the gener-
ation time distribution by the serial interval implicitly
makes this assumption (figure 1c).

In line with the above, under this assumption, the var-
iance of G is equal to the variance of S,

Var(G) ¼ Var(S)þ 2Cov(Pij, Ii)
¼ Var(S): (2:4)

This assumption is biologically implausible: it requires the
incubation period to be independent of processes affecting
infectiousness. Yet infectiousness and symptom onset are
both likely to depend on pathogen load; it is therefore unlikely
that assumption 1 holds for most pathogens. Furthermore,
unlike serial intervals, generation times cannot be negative.
When observed, negative serial intervals are empirical
evidence against assumption 1.

2.3. Assumption 2: independence of incubation period
of the infector (Ii) and time from infection of
infector to infection of infectee (Gij)

Under this assumption, infectiousness is fixed with reference
to the point of infection (figure 1b): the timing of transmission
is uncorrelated with the timing of symptom onset. As Pij =
Gij− Ii (equation (2.1b)), P would then be the convolution of
G and �I , P ¼ G�(�I ). The generation time distribution G
could therefore be derived from S by deconvolving first with
I and then with �I (figure 1c), i.e. solving S ¼ G � (�I ) � I
for G. The functional form of G would therefore depend on
both empirical distributions S and I . This is the approach
adopted for deriving the generation interval of severe acute res-
piratory syndrome–coronavirus 2 (SARS-CoV-2) in Ferretti et al.
[4] and Ganyani et al. [9].

In line with the above, under this assumption, the
variance of G is smaller than the variance of S,

Var(G) ¼ Var(S)þ 2Cov(Pij, Ii)
¼ Var(S)þ 2Cov(Gij � Ii, Ii)
¼ Var(S)þ 2[Cov(Gij, Ii)� Cov(Ii, Ii)]
¼ Var(S)� 2Var(I)
� Var(S): (2:5)

This assumption is also biologically implausible. If infec-
tiousness and symptom onset both depend on pathogen load,
individuals with a rapid increase in pathogen load will
develop symptoms early (short Ii) and transmit sooner after
infection (small Gij), leading to Cov(Gij, Ii) > 0. Furthermore,
symptom onset itself is likely to affect infectiousness.
Depending on the pathogen, the effect could be in either
direction (symptomatic individuals transmitting more
because symptoms contribute to transmission, or sympto-
matic individuals transmitting less because they self-
isolate). However, either scenario would lead to a positive
correlation between the timing of symptom onset and
transmission (electronic supplementary material, figure S1).
2.4. Assumptions 1 and 2 bound the variance of G
Although neither assumption 1 nor assumption 2 is plausible,
they are still informative: the variances of the generation time
distribution derived under these assumptions can reasonably
be considered as upper and lower bounds for Var(G),

Var(S)� 2Var(I) � Var(G) � Var(S): (2:6)

Assumption 1 leads to the upper bound Var(G) = Var(S). A
greater variance would require Cov(Pij, Ii) > 0 (see equation
(2.3)), i.e. transmission occurring late with reference to symp-
toms for individuals with a longer incubation period—for
example, a greater proportion of transmission being post-
symptomatic when symptoms appear late. The notion that
Cov(Pij, Ii) > 0 is unlikely has also been previously suggested
in the literature [2]. Furthermore, if negative serial intervals
are observed, this suggests Var(G) < Var(S) (assuming that
the serial interval distribution and generation time distribution
have a similar shape), since the distributions have the same
mean and negative generation times are not possible.

Assumption 2 leads to the lower bound Var(G) =
Var(S)− 2Var(I ). A lower variance would require Cov(Gij,
Ii) < 0 (see equation (2.5)), i.e. transmission occurring soon
after infection for individuals with a longer incubation
period. However, as discussed above, individuals with a
faster increase in pathogen load are likely to start transmit-
ting earlier and also have a shorter incubation period,
leading to Cov(Gij, Ii) > 0. Furthermore, if the appearance of
symptoms leads to a change in infectiousness (in either direc-
tion), earlier symptoms will correlate with earlier
transmission, again leading to Cov(Gij, Ii) > 0.



Table 1. Shape, mean and variance of incubation period and serial interval distributions of SARS-CoV-2 from a range of studies. N indicates the sample size.

study distribution shape mean (days) standard deviation (days) N

Zhang et al. [11] incubation lognormal 5.2 2.6 49

Li et al. [12] incubation lognormal 5.2 3.9 10

Lauer et al. [13] incubation lognormal 5.5 2.4 181

Backer et al. [14] incubation Weibull 6.4 2.3 88

Linton et al. [15] incubation lognormal 5.6 2.8 158

Ganyani et al. [9] serial interval (Singapore) gamma 5.2 4.3 54

Ganyani et al. [9] serial interval (Tianjin) gamma 4.0 4.2 114

Zhang et al. [11] serial interval gamma 5.1 2.7 34

Li et al. [12] serial interval gamma 7.5 3.4 6

He et al. [5] serial interval gamma (shifted) 5.8 4.5 77

Nishiura et al. [16] serial interval lognormal 4.7 2.9 28

Ali et al. [17] serial interval (all) normal 5.1 5.3 677

Ali et al. [17] serial interval (pre-peak) normal 7.8 5.2 162
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3. Possible solutions
3.1. Empirical testing of assumptions
A priori, there is no reason to consider either assumption 1 or
assumption 2 as more plausible than the other. With appro-
priate data, the assumptions can be tested empirically. For
example, such analysis for SARS-CoV-2 suggests a strong
positive correlation between Gij and Ii, and a weak negative
correlation between Pij and Ii [10]. In other words, for
SARS-CoV-2, neither assumption holds, but assumption 1
(independence of Pij and Ii) is a better approximation.

The empirical testing of these assumptions requires trans-
mission pairs for which Ii and Gij (or, equivalently, Pij) can be
estimated. This can be done with either: (i) data on the infec-
tion time for both infector i and infectee j and the symptom
onset time for i or (ii) data on the symptom onset time for
both i and j and the infection time for i, as the assumption
that Pij and Ij are independent allows the infection time for
j to be estimated. Therefore, an interesting corollary here is
that, for transmission pairs with a known serial interval,
data on the infection time of the infector is more informative
than the infection time of the infectee.

In practice, when such data are available, the generation
interval distribution can simply be directly estimated from
the data [10]. The reason for deriving G from S is precisely
the lack of such data; an alternative approach for assessing
the plausibility of the assumptions underlying this derivation
is therefore necessary.
3.2. Assumptions 1 and 2 as edge cases
As assumptions 1 and 2 bound the variance of G, a solution
when data are lacking is to derive G under both assumptions,
and treat these as boundary cases in downstream analysis (e.g.
best and worst case scenarios). This approach may not always
be entirely straightforward. If Var(S) < 2Var(I), assumption 2
would lead to negative variance of G. In these cases, the
lower bound for Var(G) is zero. If the serial interval distri-
bution includes negative values, deriving G under
assumption 1 is problematic. A pragmatic approach in these
cases would be to use Var(G) = Var(S) and to assume a non-
negative functional form for G (e.g. lognormal, gamma or Wei-
bull), although the resulting distribution will not be the correct
distribution under assumption 1. The key point is that evi-
dence against assumption 1, such as negative serial intervals,
is not, in itself, evidence in favour of assumption 2.
4. Implications for the modelling of contact
tracing

Finally, we explore the impact of the variance and functional
form of the generation time distribution on the modelling of
contact tracing, using the example of SARS-CoV-2. Table 1
shows empirical estimates for the mean and standard deviation
(s.d.) of the serial interval and incubation period. Both have a
mean of around 5 days. The s.d. of the incubation period is gen-
erally estimated to be in the range of 2.3–2.8 days, although
some studies have also reported considerably higher values
(table 1). With the exception of some smaller studies, the s.d.
of the serial interval is generally estimated to be of the order
of 4.2–5.5 days. Assuming the s.d. of S to be 5 days [Var(S) =
25] and the s.d. of I to be 2.8 days [Var(I) = 8], a plausible
range for the s.d. of G would thus be 5 to 3 days [Var(G) =
25 and Var(G) = 9)] under assumptions 1 and 2 respectively—
though lower values cannot be excluded if the lower estimates
of the s.d. of S or higher estimates of the s.d. of I hold.

Figure 2 illustrates how the variance and functional form of
the generation time distribution impact how quickly infected
individuals need to be isolated to prevent a significant portion
of onward transmission, that is, how quickly contact tracing
needs to operate for the epidemic to be controllable. For
example, assuming that the generation time is gamma distrib-
uted with a mean of 5 days, preventing 80% of onward
transmission requires isolation of an infected individual
within 1.1 days if the s.d. of G is 5 days, and 2.5 days if the
s.d. of G is 3 days. On the other hand, if the variance is
large, isolating individuals even with considerable delay will
still have an impact on onward transmission. For example, iso-
lating an infected individual 10 days after infection will
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Figure 2. A schematic showing the impact of functional form and variance on the timing of onward transmission. The plots show cumulative generation time
distributions, i.e. the proportion of transmission occurring within x days of infection. All distributions have a mean of 5 days. The illustrated variances correspond to
standard deviations of 5.0, 4.1, 3 and 1 days. Note that lognormal (a) and gamma (b) distributions have support on (0, ∞), implying an infinite infectious period,
which is not correct. However, in practice, this is an acceptable approximation when the probability density in the tail of the distribution is very low.
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prevent 14% of onward transmission if the s.d. of G is 5 days,
but only 7% if the s.d. of G is 3 days. In practice, if the goal of
contact tracing is to control the epidemic, the former scenario is
more relevant [4]. Thus underestimating the variance of the
generation time distribution (assumption 2) risks overestimat-
ing the effectiveness of contact tracing.
5. Conclusion
Neither of these two commonly used approaches for estimat-
ing the generation time distribution from the serial interval
distribution is based on plausible assumptions for most patho-
gens. The two approaches yield generation time distributions
with the same mean, but different variances. This difference
in variance can have a considerable impact on estimating the
controllability of an epidemic through contact tracing. The
two variances are plausible upper and lower bounds for the
variance of the generation time distribution. We therefore
suggest that a pragmatic solution is to treat the distributions
derived through the two approaches as edge cases in down-
stream analysis. When implementing this solution, it remains
important to correct for the bias towards short intervals arising
in a growing epidemic and to consider the limitations of
analyses based on contact tracing data.
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Figure 1: Schematic illustrating how symptom onset affecting transmission leads to a positive
correlation between incubation period and generation time, whether symptoms increase or de-
crease transmission. In the left-hand panels, transmission only occurs after symptom onset. In
the right-hand panels, transmission only occurs prior to symptom onset. We make the additional
assumption that the length of the incubation period does not affect when infectiousness ends
(for the left-hand panels) or starts (for the right-hand panel).
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