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Pattern formation in individual-based systems with time-varying parameters
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We study the patterns generated in finite-time sweeps across symmetry-breaking bifurcations in individual-
based models. Similar to the well-known Kibble-Zurek scenario of defect formation, large-scale patterns are
generated when model parameters are varied slowly, whereas fast sweeps produce a large number of small
domains. The symmetry breaking is triggered by intrinsic noise, originating from the discrete dynamics at

the microlevel. Based on a linear-noise approximation, we calculate the characteristic length scale of these
patterns. We demonstrate the applicability of this approach in a simple model of opinion dynamics, a model
in evolutionary game theory with a time-dependent fitness structure, and a model of cell differentiation. Our
theoretical estimates are confirmed in simulations. In further numerical work, we observe a similar phenomenon
when the symmetry-breaking bifurcation is triggered by population growth.
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I. INTRODUCTION

The systematic analytical description of pattern-forming
systems started with the seminal work by Alan Turing in
the 1950s [1], and it has found numerous applications in
chemistry, fluid dynamics, biology, and other disciplines [2].
Turing’s work initiated a large systematic effort to characterize
spatial dynamical systems, their attractors, and instabilities. A
systematic classification of spatial instabilities is now available
in the literature of nonlinear dynamics [2], and the resulting
patterns are well understood. The precise mechanisms and
reactants at work on the microscopic level are still being
unearthed in many biological systems, and while it has become
clear that Turing’s ideas are not applicable to all systems for
which they were initially developed, his picture of pattern-
forming systems is still one of the cornerstones of modern
dynamical systems theory.

While Turing’s theory describes partial differential equa-
tions at constant parameters, a related but separate picture
of defect formation was developed first in the theory of
cosmological systems [3] and later in condensed matter
physics [4]. It is now known as the Kibble-Zurek (KZ) theory
of defect formation, and it describes situations in which a
system is swept through an instability slowly in finite time.
This out-of-equilibrium process sets the density of defects
separating domains of constant order parameter [5]. The
typical length scale separating the defects, and hence the scale
of the resulting pattern, is determined by the quench rate;
slower sweeps result in patterns with large length scales, fast
quenches lead to a larger number of domain walls or other
topological defects; see, e.g., [S—9] for theoretical approaches
or [10-18] for experimental results.

The starting point for the theoretical analysis of both the
formation of Turing patterns and for the KZ picture of defect
creations is models defined by partial differential equations.
These models are formulated in terms of continuous order-
parameter field, describing, for example, the concentrations of
chemicals or biological agents, or objects such as gauge fields
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or particle densities in the context of cosmology [1-9]. It is
only more recently that pattern-forming processes have been
considered in individual-based systems. Here, the dynamics
are described in terms of reactions of discrete particles. In
chemistry, for example, a molecule of one type may react
with a molecule of a different type, in ecology a predator and
a prey individual interact, and in cell biology a progenitor
cell may “decide” to develop into one of several cell types.
These systems all evolve through a series of transitions
between discrete states, occurring as stochastic processes
with specified transition rates. A description in terms of
deterministic differential equations is only adequate here if
the number of particles in the system is large (formally
infinite) and when stochastic effects can be neglected. In finite
systems, the stochasticity of the underlying discrete-particle
dynamics can give rise to relevant effects not captured by the
deterministic limiting description. For example, this so-called
demographic stochasticity has been seen to induce persistent
cycles in a variety of models [19-24]. Spatial systems subject
to demographic noise can develop patterns and traveling
waves in parameter regimes in which a purely deterministic
description would predict a stable spatially uniform fixed
point [25,26]. These phenomena are known as quasicycles,
quasi-Turing patterns, and traveling quasiwaves, and they
can be described and predicted analytically in the so-called
linear-noise approximation [27-29].

These pattern- and wave-forming phenomena, and their
analytical description, constitute an extension of Turing’s
theory to individual-based systems. While Turing’s approach
relies on methods from nonlinear dynamics, the analysis of
noise-driven quasipatterns combines these techniques with
tools from nonequilibrium statistical physics. Both approaches
are usually applied to systems with constant parameters; this is
where Turing’s theory applies and where quasi-Turing patterns
are observed as well.

The purpose of the present work is to develop a similar
picture for spatial individual-based systems which are swept
across a Turing instability or symmetry-breaking bifurcation
in finite time. In such systems, one or more control parameters
are time-dependent. For example, populations in fluctuating
time-dependent environments are studied in [30,31], cellu-
lar decision making with time-varying external signals is
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investigated in [32,33], and models of population genetics
with time-dependent selection pressure are considered in [34].
Waddington’s picture of a marble rolling down an epigenetic
landscape with bifurcating valleys [35] is another example of a
system which is swept across a symmetry-breaking transition.

In the first part of this paper, we consider stochastic
interacting particle systems in a spatial setting in which one
control parameter is increased linearly in time, moving the
systems from a spatially homogeneous state into a symmetry-
broken regime. The symmetry breaking is triggered by intrinsic
fluctuations and leads to the formation of spatial domains of a
characteristic length scale which is determined by the quench
rate. Analytical predictions are possible within the linear-noise
approximation, and we test these predictions against numerical
simulations. Specifically, we investigate a simple model of
opinion dynamics, chosen because it constitutes a microscopic
realization of the Ginzburg-Landau equation, one of the most
basic models with a symmetry-breaking transition. As a second
example, we study a model of evolutionary dynamics in which
the underlying fitness landscape changes with time. This could
happen, for example, as a consequence of varying external
factors. The third example finally is a model of decision
making in cells.

In the last part of the paper, we consider a separate noise-
driven mechanism of pattern formation. Growing populations
subject to bistable dynamics are exposed to large noise levels at
the beginning of the dynamics, when particle numbers are low.
As the growth continues, noise levels are reduced and spatial
structures form. As we show, the typical spatial extension of
these domains scales with the growth rate.

The remainder of the paper is organized as follows:
In Sec. II we describe the basic mechanism underlying
the pattern-forming process in systems with time-varying
parameters. Section III contains an application to a model of
opinion dynamics, recently studied by Russell and Blythe for
fixed model parameters [36]. In Sec. IV we then apply these
ideas to a replicator-mutator system in evolutionary dynamics
before we discuss a model of decision making in cells in
Sec. V. Growing populations are considered in Sec. VI, and
we summarize our findings and draw conclusions in Sec. VII.

II. THE BASIC MECHANISM: PATTERN FORMATION
IN SLOW QUENCHES

In this section, we will briefly summarize the phenomeno-
logical picture underlying the KZ theory [3,4]. For recent and
in-depth investigations into the KZ theory, see, e.g., [37-39].
The theory describes systems with a spatially varying order
parameter, say ¢(x,?), and which can experience either an
ordered or a disordered phase at equilibrium. Which phase the
system is in is determined by a control parameter, g, which
can, for example, represent a (reduced) temperature. For a
general case, we say that the two regimes are separated by
a symmetry-breaking phase transition at g = g,, where the
subscript “b” indicates a bifurcation point of the dynamics.
In our convention, the disordered phase is the one in which
g < g»,andthe ordered phase is the one in which g > g;.Inthe
vicinity of the transition, the dynamical relaxation time, t, and
the correlation length, &, of the order parameter simultaneously
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diverge,

E~lg—gl™", (1)

with exponents « and v specific to the model at hand.

If the control parameter is swept through the phase
transition as a linear function of time, g(t) = ut (u > 0),
starting from the disordered phase g < g, the dynamic
relaxation time will exceed the time scale on which the control
parameter varies near g = g, and the system will cease to
evolve adiabatically. Zurek [4] estimated that this will happen
at the time, f., when g/(g — g5) ~ T, which directly leads
to 7 ~ 1(t.), where f =t. —t;, and where 1, is the time at
which g(t) = g,. We denote quantities at the point where the
system ceases to follow quasiequilibrium by subscript ¢, and
the distance between the bifurcation point and the critical point
by hats (f = t. — 1, § = g. — g»). One keeps in mind that the
relaxation time and correlation length are functions of g, so
that in our linear annealing protocol they are functions of 7.
In line with the existing literature [4], we will refer to the
time 7 as the “freeze-out” time, which is the time that elapses
between crossing the equilibrium bifurcation point, g,, and
reaching the point g, at which the system resumes its adiabatic
motion. This reflects the observation that order-parameter
fields of systems undergoing a quench frequently remain close
to the equilibrium point in the disordered phase, even beyond
the point where the sweep has progressed into the ordered
regime, g > gp. It is only after some delay that the system
falls out of the unstable disordered equilibrium and that the
order parameter assumes values typical for the ordered phase.
Within the KZ picture, topological defects are created at this
time and then remain frozen into the dynamics, although some
slow coarsening may follow. Details can be found in [5-9];
we will occasionally refer to this phenomenon as a “delayed
bifurcation” [37,38,40].

Using the scaling of Eq. (1), one finds 7 ~ w T, or
equivalently, using g = uf,

T~ g — gl

g~ ur 0)

The length scale setting the density of defects is in turn given
by

E~pw. 3)

The scaling of the resulting length scale, &, with the quench
rate, i, depends on the equilibrium exponents k and v of
the system. For simple Ginzburg-Landau systems we have
v =1/2 and « = 1, for example [4], so that the length scale
follows £ ~ ;~'/*. In a one-dimensional system, the number
of defects created in a slow quench hence grows as i!/4. In a
two-dimensional system with point defects only, the density of
defects would scale as £ 2, i.e., as the square root of the quench
rate. These results have been verified in numerical simulations
for a variety of different systems, and they are corroborated
by analytical calculations based on linear approximations of
the underlying stochastic partial differential equations [5-9,
41,42].

III. MODEL OF OPINION DYNAMICS

As a first example of an individual-based system in which
patterns are generated during a slow quench, we consider
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a microscopic realization of the time-dependent Ginzburg-
Landau equation. This equation is the archetypal example of a
symmetry-breaking phase transition, and an individual-based
realization has recently been proposed by Russell and Blythe
[36]. Specifically, the authors consider a model of processes
in linguistics; each individual can be in one of two discrete
states, representing “two ways of saying the same thing” [36].
Similar models have been used in the context of opinion
dynamics, where the two states represent two possible views
any individual may have on a given subject (see Ref. [43]
for a review). The agents’ choice of state is determined
through interactions with other individuals in their immediate
neighborhood, potentially subject to a systematic bias toward
one of the two states. We will detail this below. It should be
kept in mind that this model is not specifically designed to
model any real-world process; here we study it primarily as
a microscopic realization of the Ginzburg-Landau dynamics.
Any reference to this model as a model of opinion dynamics
or of language dynamics is therefore metaphorical.

A. Model definition

The model is defined on a one-dimensional periodic lattice
with L sites, each hosting N individuals (also referred to as
spins). Sites will be labeled by £ = 1, ...,L, and each of the
N L spins can be in one of two states, up and down. We will
write n, for the (time-dependent) number of up-spins in site £,
and consequently the number of down-spins in site £ is N — .
We will consider a continuous-time dynamics defined by the
following rates:

Tie(ne — 1ng) =1 — 2D)[1 — I(ng,1)]ng,
Tre(ng + 1ng) =1 — 2D)I(ng,t)(N — ng),

4)
Ty sty — 1|ng)=Dny | Ll N = e
3,e\Ity 4 L N N 5
eyl Mg
T. 1|ny)=D(N — [— —]
4e(ng + 1lng) ( ng) N + N

where the objects £ £ 1 are to be read as modulo L. The
constant D regulates how frequently individuals in one
site interact with individuals in the neighboring sites. This
will ultimately lead to a diffusion-type term in the limiting
deterministic description; see below. The quantity I1(n,?)
represents a systematic bias toward one of the two states; we
will define its functional form below.

The probability distribution, P(n,t), for the system being
instate n = (n, ...,ny) at time ¢ satisfies the master equation

dP(nt) L /
" —WZ#[T("W)P(nJ)—T(nIn)P(n,t)], )

where T (n'|n) is the total transition rate from state n to state
n'. For convenience, we only indicate the variables that are
changed in any one reaction in Eq. (4). In the first and third
reaction in Eq. (4), an up-spin is replaced by a down-spin in site
£. Similarly, the second and fourth reactions describe processes
in which a down-spin is replaced by an up-spin. Either process
may happen through local interactions within site £ [first and
second reaction in Eq. (4)], or through interactions with the
neighboring sites £ & 1 (third and fourth reaction). To interpret
the first type of reaction, one may think of an up-spin being
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chosen for potential update in site £, hence 77 ¢ is proportional
to ne. This spin is then replaced by a down-spin with rate
1 — II(ng,t). Similarly, the transition rate for the reaction
replacing a down-spin by an up-spin through local interaction
is proportional to N — n, and I1(n,,?); see the second reaction
in Eq. (4).

The third and fourth reactions in Eq. (4) finally represent
interactions of spins in one site with a neighboring site. In
the third reaction, an up-spin in site € is chosen for potential
update (hence the rate is proportional to ), and then a random
spin from either of the two neighboring sites is chosen. If that
second spin is in the down-state, the spin in site £ adopts the
down-state as well. The fourth reaction works similarly.

The Ginzburg-Landau potential can be realized as a
systematic bias toward the less populous state in the phase
of unbroken symmetry, and toward the more populous state in
the broken symmetry phase. More specifically, we use

1 a 2

5T aptle®—¢l ©
where ¢ is the local magnetization, ¢, = (2n,/N) — 1 [36].
The parameter a > 0 denotes the strength of the potential;
its value needs to be chosen such that 0 < IT < 1 for all
values of ¢, €[—1,1]. If a = 0, then [1(ng,7) ~ ny, and there
is no bias toward either of the two states. For g < 0, the
quantity g — ¢£2 is negative, and so the second term in Eq. (6)
describes a bias toward the less populous state. For g > 0 (and
assuming @7 < g), one has a bias toward the more populous
state. The control parameter g(¢) can take any real value up
to g = 1 in this setup. While Russell and Blythe [36] have
considered this model at constant values of the parameters,
here we will systematically sweep the system across the
transition; specifically, we investigate linear quenches of the
parameter g.

1
(ng,t) = 5(1 + ¢o) +

B. Linear-noise approximation

The master equation describes the above stochastic process
exactly, and we recover information about the deterministic
dynamics and finite system-size corrections by following the
work of van Kampen [44]. We separate fluctuations, &, from
the limiting deterministic dynamics and write

N=T+N_l/2§e, @)

where ¢7° represents the local magnetization in site £ in the
deterministic limit. Carrying out the system-size expansion to
lowest order, one finds

¢ = DAGY + ap[e(t) — (65°)°]- ®)

The quantity A¢;° is the lattice Laplacian, i.e.,
APy® = @77 — 2¢5° + ¢2 . At constant values of g, these
dynamics have stable spatially homogeneous fixed points,

5*(9) 0 for g <0, ©)
8= +/g for g=>0.

At next-to-leading order in the expansion of the master
equation, we recover a Fokker-Planck equation for the prob-
ability distribution of the fluctuations about the mean-field
dynamics, P(&,t), and from this we find the equivalent set of
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Langevin equations. Anticipating that we will linearize about
the zero fixed point of the deterministic dynamics, we simplify
these equations using the ¢* = 0 fixed point of Eq. (8). This
assumption will be justified below. In this linearization, we
find that the fluctuations follow the dynamics

. 1
& = DA& + ag(t)é, + \/;W(t), (10)

where Ne is white noise with correlator
(ne@)ne (")) = 84 8(t —t'). The noise is not correlated
across different cells, as there are no reactions which change
particle numbers in more than one lattice site at a time. As
we have effectively made the expansion ¢, = ¢* + 2N /2,
and used the fixed point ¢* = 0, the evolution of the order
parameter due to fluctuations about the fixed point is given by

. 2
¢e = DAy + ag()ge + \/;7715(1) (11)

C. Characteristic length scale and density of defects

Analytical studies of slow quenches from the disordered
into the ordered phase have previously been carried out;
see, e.g., [7-9,41]. For completeness, here we reiterate the
main steps. These analyses start from the Ginzburg-Landau
equation (8), complemented by external additive Gaussian
white noise. Taking g(¢) to be a linearly increasing function
of time, g(¢r) = ut (u > 0), and starting at an initial time
to < 0, the symmetry-breaking phase transition is crossed at
t =0, hence g, =0 and g(f) = g.. Simulations show that
the order-parameter field, ¢, remains close to zero throughout
the stable regime (g < 0), and well after the transition point
has been crossed. It only “jumps” to its nonzero equilibrium
value at a well-defined later time, f > 0 [7,8]. This observation
provides justification for the linearization about the zero fixed
point.

The linearized equation (11) is easily analyzed in Fourier
space. We write (]Sq(t) for the Fourier mode of the order
parameter with wave number ¢. Thus the structure factor,
S(gq,t) = (|q~ﬁq(t)|2), where (---) represents an average over
realizations of the noise, is given by

S(g.t) = 1 2 ur-angn / p PP —ant® (12)
27 N f

To evaluate the integral, one assumes that 7 and 7, are
sufficiently large for the integral to be well approximated by
the infinite limit case [t — —o0, t — 00; this is justified if
g(tp) and g are of order 1, and if u < 1]. One makes the further,
related assumption that Dg? <« 2aut, and the structure factor
can be written as

1 2 2
S(q.t) A ———— ™ 2D10 13
(g.1) JRai N (13)
Using Parseval’s theorem [45], the expectation value of
#>() can be obtained from integrating Eq. (13) over g. One
finds

(@*(0) ~ ant’, (14)

1
—c
2Daut N
To determine when the order parameter jumps from the
unstable fixed point to either of the stable fixed points defined
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by ¢*(¢t) = £4/g(t), we combine this result with the implicit
equation (¢*(7)) = 88, where § = g(f) and 0 < § < 1, to find
that g satisfies [8]

8= \/ﬁ In(SN~/2Da §372). (15)
a

Thus the linear-noise approximation leads to the scaling
behavior § ~ 1!/2, up to logarithmic corrections, which agrees
with the Kibble-Zurek prediction in Eq. (2).

The structure factor, S(q,t) (¢ > 0), has its peak at g = 0,
and accordingly the only length scale in the linearized system
is set by its half-width, I', defined by S(I'/2,t) = S(0,t)/2.
From Eq. (13) we find I'(t) = \/21n2/(Dt), i.e., at the point
when the system falls out of the unstable equilibrium near

¢ = 0, we have
. 21ln2
P= 2R (16)
Dg
with g as given above.

The length scale & ~ ['~! is, in an idealized situation,
inversely proportional to the number of point defects in the
one-dimensional system. These defects are identified as zero
crossings of the field variable, ¢, separating domains of
positive and negative order parameter. The expected density

of zero crossings, (p), can be estimated using the well-known
Liu-Halperin-Mazenko formula [46,47]

_ L[ =0 _1 [[dgq>S@q.n)
o) =\ "ci=0 "= [dq Sq.0) " a7

where C(¢) is the spatial equal-time correlation function of the
order-parameter field, which is equivalent to the spatial inverse
Fourier transform of the structure factor (in order to be able to
formally introduce a derivate with respect to £, a continuation
to real £ is implied). Specifically, for this model one finds

L T
amypVe
These results reproduce those of Ref. [8], and the resulting
scaling of the density of defects with the quench rate is in
agreement with Eq. (3). The density of zero crossings is related
to the width of the structure factor through the relation

(p() = (18)

1
(o)) = —

1
r'@). 19
7 B (0 19)

D. Test against simulations

We compare quantitative predictions of the linear-noise
approximation, Eqgs. (15), (16), and (18), against numerical
simulations in Fig. 1. Simulations of the stochastic process
described by reactions (4) are performed here using the
stochastic simulation algorithm by Gillespie [48,49]. The
range of the quench rate, u, over which we can obtain
results has a lower limit due to difficulties in counting zero
crossings when g is close to zero, and an upper limit as
the microscopic model is only meaningful for g(r) < 1. As
seen in the inset, theoretical predictions for g agree with
simulations. Similarly, good agreement is found for the width
of the structure factor, I, at the point at which the defects
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0.2 ] * T \\‘ T T
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DNp 9 =0.1/0¢2 |
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FIG. 1. Density of defects per unit length in the model of opinion
dynamics at g = ¢. Defects are counted directly (circles) and with
an imposed threshold (triangles); see text for details. Data are from
stochastic simulations of the opinion dynamics model [Eq. (4)]. Also
shown (squares) is the width of the structure factor, I, from the
stochastic simulations, rescaled by a factor of 2w +/21n 2 to collapse
with p [see Eq. (19)]. The solid line is the theoretical prediction of
Eq. (18). Inset: Values of ¢ from stochastic simulations (symbols) and
from the theory, Eq. (15) (solid line). Error bars represent standard
deviations over 100 realizations. Model parameters are a = 0.42,
D =0.08, N =2 x 10*, L =200, and § = 0.2.

are formed. The width is measured by fitting a Gaussian to
the averaged structure factors calculated from the simulations
at t = . We find that the fitting process is susceptible to
errors when the structure factor is not sharply peaked. To
avoid this, we choose the diffusion rate, D, to be sufficiently
large. Counting the number of defects (i.e., zero crossings)
directly comes with some difficulty not previously reported
for other systems [8,9]. Those existing studies have mostly
focused on very small amplitudes of external noise, typically
of the order 1078 or so (see, e.g., [8]). In our model, the
source of the noise is not external, but intrinsic, and its
amplitude is proportional to N~!/2, where N is the number
of individuals in each site. In the simulations leading to Fig. 1
we use N = 2 x 10%, which corresponds to a noise amplitude
several orders of magnitude above those typically used for
direct simulations of defect formation in stochastic partial
differential equations. We find that a naive counting of zero
crossings gives results consistently above the predictions from
the theory, see Fig. 1, and deviations are particularly high at
small quench rates when the freeze-out occurs close to g = 0.
We attribute this to the relatively large noise amplitude, leading
to spurious zero crossings in the simulations, and to the fact
that defects may not have fully formed. Further analysis has
shown that the agreement of stochastic simulations with the
analytic solutions improves with increasing system size, N.
To avoid counting spurious zeros, we empirically introduce
a threshold to ensure the kinks satisfy a minimum size
requirement. Specifically, we only count two zero crossings
of the order-parameter field as separate defects provided the
magnitude of the order-parameter field exceeds a threshold, ¥,
in between. This threshold is chosen to be a fraction of the rms
field amplitude, which at time 7 is given by /8[¢*(7)]2, where
¢*(f) = +./2 represents the stable fixed point of Eq. (8).
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Specifically, we choose ¥ = 0.1 x /8[¢*(f)]?, and applying
this procedure we find that simulation results are close to the
predictions of the linear theory; see the main panel of Fig. 1.

E. Discussion

Two remarks are in order before we move to a more complex
example in the next section. First, the analytical results
presented in the previous section are, up to constants and
normalization factors, identical to those obtained previously
in Ref. [8]. The main difference is the source of noise in the
model. In most existing studies, noise was added externally to
a deterministic partial differential equation. In our example,
we start from an individual-based model, in which the noise is
intrinsic and originates from the stochastic reaction dynamics
in finite populations. Carrying out the system-size expansion,
we ultimately arrive at an equation very similar to those studied
previously (the Ginzburg-Landau equation); the microscopic
model was designed to do so. The fact that the noise comes out
as white noise in the Gaussian approximation is again a feature
of the specific microscopic model we used as a starting point.
We chose this simple example to make contact with existing
studies of defect formation in slow quenches. We will move
to more complex models below. The second remark concerns
the application of the threshold, ¢, to identify the relevant
defects. This is an ad hoc procedure; a detailed analysis shows
that the absolute number of defects counted carries some
dependence on the threshold. We choose the threshold to be
one-tenth of the root-mean-square (rms) field amplitude at
the point at which the defects are counted, and we find that
this leads to good agreement with the theoretical predictions,
although we do not have further justification for this choice. It
is important to keep in mind that the Liu-Mazenko-Halperin
formula, Eq. (17), is subject to various constraints, in particular
a continuous order-parameter field, and that similar problems
relating to spurious zeros are briefly mentioned, for example,
in Refs. [6,50]. We would argue that the length scale set by the
width of the structure factor is the more fundamental quantity
here, and that the density of defects has more of a derived
character. For the width of the structure factor, we observe
very good agreement between theory and simulations, and in
this sense we think that the KZ theory is perfectly applicable
to the individual-based system we study here.

IV. EVOLUTIONARY DYNAMICS
A. Model definition

We next consider an example from the theory of evolu-
tionary dynamics, more specifically a spatial metapopulation
model of two species who interact subject to natural selection
and mutation. As in Sec. III, the model is defined on a
one-dimensional periodic lattice with L sites, and it operates
in continuous time. Each site hosts a well-mixed population
of individuals, each of which can be of type A or of type B.
These represent the two interacting species or phenotypes. We
write n, for the number of individuals of type A, and m, for
the number of individuals of type B in site £. The interaction
between the two phenotypes is governed by an evolutionary
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game, defined by the so-called payoff matrix
A B
A 1 1 —g(1). (20)
B| 1—g® 1

Details of stochastic evolutionary game theory can be found,
for example, in [51]. Broadly speaking, an interaction between
two individuals of the same type (AA or BB) adds one unit
of fitness to each of their reproductive propensities, while an
encounter of individuals of two different types (an A and a
B) contributes 1 — g to each of their fitnesses. We use g as a
time-dependent external control parameter; its interpretation
will be discussed in more detail below.

The expected (rescaled) fitness of an individual of type A
(B) in site £ is then given by
ng
Q

( 1) = —l[l —g(?)] =
Mg(ne,my, + .
B 4 14 Q g S-z

TA(ngme.t) = — + %[1 — g0,

2n

In our model, the total number of individuals in a given site,
ne + m,, will not be constant, and so we have introduced 2 as
the typical number of individuals in each lattice site. We will
use 71/2 as the expansion parameter.

Reactions between individuals within a given site occur
with the following transition rates:

1 nyniy lv
Tos,(1esme) = S (=) + B = Mp)l ==+ 55’”5’
1 ngme 1v ,
Ta, B, (ng,myg) = 5(1 —)[1 + B(IIz —TIy)] ) + LG
(22)

The first reaction describes transitions in which an individual
of type B is converted into an individual of type A, and the
second reaction describes the opposite process. A conversion
of, say, a B into an A can occur via two different routes:
(1) two individuals of different types interact, and conversion
of the B into an A occurs with a rate proportional to
[1 4 B(IT4 — I1p)]/2. The opposite conversion happens with
rate [1 + B(ITg — I14)]/2. This is known as the “pairwise
local comparison process” [52]; the parameter 8 indicates the
strength of selection. For § = 0, the relative fitnesses of the two
types of individuals are irrelevant, and the dynamics describes
neutral evolution. For 8 > 0, differences in fitness increasingly
matter. The parameter v is a mutation rate, indicating the rate
with which copying errors occur. Thus in an interaction of an
A and a B, in which one is chosen for reproduction and the
other for removal, an effective change of n, and m, only occurs
when no copying error is made, i.e., with a rate proportional
to 1 — v. These processes are described by the first term in
each of the transition rates given above. (ii) As a consequence
of copying errors, effective changes of n, and m, may result
from an interaction of two individuals of the same type. This
occurs with a rate proportional to v and is captured by the
second term in each of the above reaction rates. In addition
to the on-site reactions, we allow particle hopping between
neighboring sites with the following rates:
Tpa,sa,(ng) = Dngdje—p) 1,
(23)
Tp,p,(mg) = Dmydjg—p)1-
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The first of these two reactions describes the hopping of a
particle of type A from site £ to a neighboring site ¢’ = £+1,
while the second reaction captures the hopping of individuals
of type B. The parameter D > 0 represents the hopping rate.
We stress that this is not an exchange process, but that the total
particle numbers in each of the two cells change.

B. Linear-noise approximation and characteristic length scale

To carry out the system-size expansion, we write (¥, x*°)
for the deterministic concentrations of individuals of type A
and B, respectively, i.e., ;° = limg_,o 1¢/ 2, and similarly
for x;°. To capture Gaussian fluctuations, we write

n m
5‘ > P+ Q2% 5‘ XX+ 2, 24

where (§,¢) are the variables which represent the stochastic
contributions to the dynamics within the first subleading order
of the van Kampen expansion.

From the leading-order terms in the expansion, we recover
a system of equations which describes the evolution of the
deterministic concentrations,

Vi = DAY + (1= By x* (Vi — %)
v 2 2
W) - ()]
X2 =DAXZE — (1 =BgOVEX® (W — x°)
v 2 2
2w - )]
Asbefore, A is the discrete Laplacian operator. It is convenient
to introduce the order-parameter field ¢, = (ny — my)/ <2,
which in the deterministic limit, written as ¢;°, is simply
the difference of the concentrations, y;° and x7°. In the
finite system, the total number of particles in each site is of
order €2, and we expect site-to-site fluctuations to be of order
QY2 In the deterministic limit, these fluctuations become
irrelevant. Assuming from now on that initial conditions are
such that n, +m, = Q for all £, we have ¥/° + x;° =1 in

the deterministic limit. The evolution of the order parameter
is then described by

(25a)

(25b)

. 1 —
97 = DAY + ——pe0)]1 = (97°) 07" — voi®. (26)

For constant values of g, the stable fixed points of these
dynamics are

2v
0 for g < Top

P () = 7 . 27)
/1 -aog for &> as

and the bifurcation point is g, = 2v/[(1 — v)B].
By linearizing the next-to-leading-order equation about the
¢* = 0 fixed point, one obtains the Langevin equation

. 1 —
iy = [DA + Tvﬂg(t) - v} ety (28)

for the quantity A, = &, — ¢, which represents the fluctuations
about the fixed point. The main difference between the analysis
here and that in Sec. III is that the hopping reactions result in
spatially correlated noise terms, ;. Specifically, we have

Me@me(t)) = 8@ —tH[(1 +4D)8p¢ — 2D8je—¢ 11 (29)
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Further details of the derivation can be found in
Appendix A. Switching again to Fourier space, the structure
factor, S(g,t) = (|kq(t)|2), takes the form

14+4D(1 —cosq) o 5 Bt ~20+ Dg)t
2

1
1—v / !
x f dt/ e 2 But?*+2(v+Dg?)t . (30)
4]

S(q,t) =

As in Sec. III, one assumes that ¢ and #; are sufficiently
large for the integral to be well approximated by the infinite
limit case. Furthermore, the structure factor is sharply peaked
about ¢ = 0, so one assumes (v + Dg?) < (1 — v)But and
1 — cos g A~ g*/2. Making these approximations, the structure
factor can be written as

1 +2Dg?
21 —v)Bu

and integrating over ¢, one finds the expectation value of ¢p>(t),

S(q.t) ~ 20D (3))

1+
e
2/ —v)DBut Q

The time 7. at which the order parameter jumps from the
unstable fixed point, ¢* = 0, to the stable point can be found

from
2v
—} , (33)
(1 —v)Bg(t.)

where the term in square brackets on the right-hand side is the
square of the stable fixed point in the ordered phase, as given
in Eq. (27). To estimate the expected number of zero crossings,
finally, we again use the Liu-Mazenko-Halperin formula and

find
11 [u u
1) == /— |1+ , 34
(p(t:)) 27 VbV 2 Iig (34)

where g. = g(t.).

(@*(1)) = Spur-w (39

(@) =8 [1 -

C. Test against simulation

We test these analytical predictions against simulations
in Fig. 2. As in the previous section, simulations of the
microscopic model, Egs. (22) and (23), are carried out using the
Gillespie algorithm. We vary the quenchrate, 1, from5 x 107
to5 x 1072, which for our parameters satisfies the requirement
that the transition rates must be positive [53]. As in the previous
model, we find excellent agreement between simulations
and theory for the quantity § = g(¢.) — g», representing the
amount of delay experienced by the bifurcation; see the inset
of Fig. 2. The density of defects, i.e., zero crossings of the
order-parameter field, ¢(z.), is subject to the same difficulties
as in the previous model, and so we again apply an empirical
threshold ¥ to eliminate spurious defects. As before, we choose
% = 0.1 x /8[¢*(z.)]%, where ¢*(z.) is the stable fixed point
in the ordered phase, now given by Eq. (27). As seen in the
main panel of Fig. 2, this leads to very good agreement with
the theoretical predictions [Eq. (34)]. We also see excellent
agreement for the measured width of the structure factor, I'(z,),
from simulations. As before, I'(#.) is rescaled in Fig. 2 for
optical convenience, using Eq. (19), in order to agree with
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FIG. 2. Density of defects in the model of evolutionary dynamics
at g = g.. Triangles are from simulations of the individual-based
model, Egs. (22) and (23). As before, a threshold has been applied
when counting zero crossings (see the text). Squares represent
simulation data for the width of the structure factor, I'(¢.), rescaled
to collapse with p. The solid line is from Eq. (34). Inset: Symbols
show measurements of ¢ from simulations. The solid line shows
& = g(t.) — gp, with 7. as obtained from Eq. (33). Error bars represent
standard deviations over 100 realizations. Model parameters are
v =10.001, 8 =0.38, D = 0.1, 2 = 5000, L = 200, and § = 0.2.

(p). Examples of the patterns formed by the system are shown
in Fig. 3 for two different values of the quench rate . The
light and dark shaded regions represent populations dominated
by individuals of types A and B, respectively. As seen in
the figure, fast quenches result in multiple domains, each
of a relatively small size [Fig. 3(a)], whereas slow quenches
produce relatively few large-scale domains [Fig. 3(b)].

While the symmetry breaking leading to the formation of
the domains in Fig. 3 is triggered by intrinsic noise, the origin
of the patterns is qualitatively different from the mechanism
underlying stochastic Turing patterns. The wavelength of the
patterns shown in Fig. 3 is set by the quench rate, u, and

FIG. 3. (Color online) Spatiotemporal dynamics of the order
parameter, ¢,(t), for the model of evolutionary dynamics. Light
shading indicates high values of ¢,(¢), dark shading indicates low
values. Solid line corresponds to the value of g. for this realization
of the stochastic dynamics. The quench rates are (a) u = 2.8 x 1072;
(b) u = 2.8 x 1073. The remaining model parameters are as in Fig. 2.

062104-7



PETER ASHCROFT AND TOBIAS GALLA

the amplitude is not proportional to the noise intensity. To
distinguish the two phenomena, it is also useful to realize
that stochastic Turing patterns are sustained by noise (i.e.,
switching the noise off once the patterns have emerged will
remove them), whereas the patterns shown in Fig. 3 are
triggered by noise but will remain if the noise is switched
off once the domains have formed.

V. DECISION MAKING OF CELLS

A. Deterministic model

The dynamical process of a system being swept slowly
across a symmetry-breaking bifurcation has an interesting
application in the modeling of cell differentiation. In his
now famous picture of an “epigenetic landscape,” Waddington
represents a cell by a ball or marble rolling down a landscape
of bifurcating valleys [35]. As time progresses and the
marble rolls downhill these valleys may split, and the cell
(or marble) has to make a decision about which path to
take. In Waddington’s metaphorical picture, this represents
cell differentiation. These ideas have been applied to gene
regulatory systems in a number of biological systems. Most
notable are the so-called toggle switches, for example, in the
context of the development of drosophila embryos [54] or
E. coli [55]. One common class of simple models comprises
two fate-determining biological agents [56] (for example,
transcription factors) with mutually inhibitory interaction. A
simple deterministic model capturing the salient features is
given by the following set of differential equations:

1

f = ——o — BV, X - Bx. (35
4 5 (ex) BV, X Bx. (33

1
1+ (gy)y

The variables v and x describe the concentrations of the two
competing substances. The first term in each reaction describes
mutual inhibition; the growth rate of either substance is
suppressed by the presence of the other reactant. The variable g
controls the strength of this interaction. The terms proportional
to B finally are decay terms. While the suppression terms
follow the commonly used Hill functional form [56,57], this is
of course a rather stylized model. Decay rates, interaction
coefficients, and Hill coefficients could in principle differ
among the substances, and other reactants have been neglected.
Our aim is not to construct a detailed model of any particular
biological system, but instead to study the main principles
at work. The nonspatial model defined above displays the
required bistability. More precisely, these equations have a
symmetric fixed point, * = x*, given by

1

_;’ (36)
B 1+ (gy*)”

x'(@)=v"g =

where we note the dependence on g. This fixed point is stable
for g < g, and unstable for g > g,, where g is the bifurcation
point, which can be found from linear stability analysis. For
g > gp, two additional fixed points are found. These are stable
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FIG. 4. (Color online) Phase portraits of the deterministic model
of cell differentiation, Eq. (35), for g = 0.25 (a) and g = 0.75 (b).
Arrows indicate the flow of the dynamics, filled circles are stable
fixed points, and the open circle indicates an unstable fixed point.
The background color indicates the speed of the flow, v/1/2 + x2.

and have to be calculated numerically. The resulting phase
portraits in the two phases are illustrated in Fig. 4. For coupling
strengths smaller than a critical value, g < g5, the system
has a unique fixed point at relatively high concentrations of
both reactants, as shown in Fig. 4(a). This corresponds to
the undifferentiated state, a unique valley in Waddington’s
landscape picture. For g > g;, however, the symmetric fixed
point is unstable, and two stable attractors emerge, as shown
in Fig. 4(b). At each of these stable attractors, one substance
dominates over the other, corresponding to a differentiated
state. Throughout this section, we use the parameter values
B = 0.5and y = 4, so that the symmetry-breaking bifurcation
occurs at g, =2 x 37/4 ~ (.5.

In this section, we will consider an individual-based spatial
realization of this model, subject to a continuous sweep of g
from the undifferentiated regime to the differentiated phase. As
in the previous sections, g is swept linearly in time, such that
g(t) = ut. As we will see, the KZ picture is readily applicable
to this scenario, and good predictions can be made about the
spatial patterning resulting from such a protocol.

To illustrate the decision-making process, we show the
evolution of an individual-based realization of the above model
in Fig. 5. The exact model will be defined further below. The
continuous smooth lines indicate the location of the stable
fixed points of the system as g is varied, dashed lines represent
unstable fixed points. The fluctuating lines are the particle
concentrations, ¥ and x. As seen in the figure these stay
close to the symmetric fixed point in the initial phase of the
evolution, g < g, but also into the symmetry-broken phase,
g > g», When the symmetric fixed point is unstable. Symmetry
breaking only occurs some time into the broken phase at a time
t., when g(z.) > gp. This delay in the bifurcation depends
on the quench rate, . As seen in Fig. 5(a), the delay can
be significant for fast quenches but it is reduced in slower
quenches [Fig. 5(b)]. At this freeze-out, the system makes
its “decision,” and one of the concentrations, ¢ or y, will
assume a relatively low value while the other one will assume
a significantly higher value, corresponding to the two stable
fixed points of the system in the symmetry-broken phase.

B. Definition of the individual-based model

The model is again defined on a one-dimensional periodic
lattice with L sites, with each lattice site £ containing n,
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FIG. 5. (Color online) Trajectories obtained from single simula-
tion runs of the stochastic model of cellular decision making. The
noisy lines show simulation data for v, and yx, at a single lattice site.
The quench rates are (a) i = 2.3 x 1072; (b) u = 2.3 x 1073, The
solid smooth lines indicate stable fixed points of the deterministic
dynamics; dashed lines are unstable symmetric fixed points. Model
parameters are D = 0.1, V = 1000, L = 200, and § = 0.2.

molecules of the first chemical reactant and m, of the second.
Each lattice site represents a biological cell in this setup, and
we denote the cell volume by V. In the deterministic limit,
the concentrations of the two chemicals in cell £ are given
by ¥° =limy_,o(ng/V) and x;° = limy_(me/V). The
production of molecules of either type occurs with rates

Tie(ne + 1,mglng,mg) = h(me/V,1) V,

37
T o(ng,mg + llng,mg) = h(ng/V,t) V,
where h(x,t) is the inhibitory Hill function,
1
h(x,r) (38)

NPT

see also [54]. Both substances decay with rate B; these
reactions are described by

T3,0(ng — 1,mg|ng,me) = Bny,
(39)
Ty e(ne,mg — llng,my) = Bmy.

In addition to these reactions within a given cell, we allow
for diffusion processes between neighboring sites. These are
captured by the following reactions:

Tse(ng — Ling + 1|ng,ng) = Dngdje—p) 1,
(40)
Toe(me — Lmy + 1|mg,mg) = Dmdo_p) 1,

where, again in the spirit of a minimalistic stylized model, we
assume equal diffusion rates, D, for both substances.

C. Linear-noise approximation and number of defects

We proceed by carrying out the van Kampen analysis. On
the deterministic level, one finds

X =DAYF® 4+ ———— — P 41
1/’15 wz + 1+ [g(t)x,_?"]y ,Bwe (41a)

Xi©=DAx” + —Bx;°.  (41b)

1
1+ [g0v]”
If we again define the order parameter as
¢¢ = (ng —my)/V, and correspondingly ¢;° = ¥° — x;°,
then the central fixed point, ¥ *(g) = x*(g), corresponds to

PHYSICAL REVIEW E 88, 062104 (2013)

¢;° = ¢* =0, which is stable for g < g, and unstable for
8 > &b-

As before, we make an adiabatic approximation and
assume that, despite the fact that the control parameter g
is varied linearly in time, the dynamics operates near the
symmetric deterministic fixed point ¥*(g) at all times, where
g = g(t) = ut. These assumptions are valid up to the time,
t., when the decision making occurs. As shown in Fig. 5,
the trajectories of the stochastic dynamics remain close to
¥*(g) = Y¥*(ut) up to that point. At next-to-leading order in
the system-size expansion, we then find the following linear
Langevin equation describing the fluctuations about the above
deterministic dynamics:

Ao = {DA — By[ByY*(ut) — 1] — Bl + ne(t).  (42)

We have introduced Ao via the relation
(ng —my)/V =¢°+ V~12%,. The variables n, are
Gaussian noise terms, and within the above adiabatic
approximation, their variance and spatial correlations are
dependent on the value of the central fixed point,

e@ne(t")) = 8(t — )48 + 8D)Y* ()¢
—4DY* (ut)8je—p)1]- 43)

At the symmetric deterministic fixed point, we have ¢* = 0,
and linearization about this value gives ¢y = V~'/2,. Within
the linear approximation, we can therefore write

b = (DA — By[BY*(ut) — 11— Blpe + V™ 2nu(0).
(44)

Following the previous section, we can obtain a closed-form
solution for (¢>(¢)), reported in more detail in Appendix B.
This expression can be integrated numerically and used to
find § = g. — g», where g. = g(.), and where the time of the
freeze-out, t., is obtained from

(@*(10)) = 8[p* (1)1 (45)

The quantity ¢*(¢) is the stable nonzero fixed point for
g(t) > gp. To calculate the expected density of zeros, we
use Eq. (19), where I'(z.) is the width of the structure factor
evaluated at the freeze-out time defined by Eq. (45).

D. Test against simulations

We test these analytical predictions against simulations of
the process defined by Egs. (37), (39), and (40) in Fig. 6.
Again, as seen in Secs. III and IV, we find good agreement
between simulations and theory for the quantity g; see the
inset of the figure. The zero crossings of the order-parameter
field are counted subject to a minimum size threshold defined
by one-tenth of the rms field amplitude, as discussed in
Sec. III. In the main panel of the figure, it is seen that
for fast quenches these values agree with the theoretical
prediction, however for slow quenches the density of defects
deviates from the prediction. We attribute this to difficulties
in counting zeros when g. ~ g,. The measured width of the
structure factor shows good agreement with the theory for all
quench rate values, even when the density of defects shows
deviations. As explained above, we consider this width the
more fundamental quantity throughout this work. We note,
however, that deviations between theory and simulations are

062104-9



PETER ASHCROFT AND TOBIAS GALLA

0.2

s ]

0.1 A p 9 =01/562 [

0O I'(¢.) (rescaled)
| | |

|
0.001 0.01

FIG. 6. Density of defects in the model of cellular decision
making at g = g... Triangles show results from numerical simulations
of the individual-based model, Egs. (37), (39), and (40). As in
the previous models, a threshold is applied when counting zero
crossings. Squares show the width of the structure factor, I'(z.),
measured in simulations, rescaled to collapse with (p). The solid
line shows the theoretical predictions, obtained using Eq. (19), and
the expression for the structure factor given in Appendix B. Inset:
Values of g from stochastic simulations. The solid line corresponds
to the solution of Eq. (45). Error bars represent standard deviations
over 100 realizations. Model parameters are as in Fig. 5.

stronger for this model than for those of the previous sections.
This is presumably due to stronger nonlinearities in the cell
decision model. Nevertheless, our results show that the theory
based on the linear-noise approximation can successfully
predict the delay of the bifurcation and that it captures the
characteristic length scale of the resulting patterns to a good
degree.

VI. GROWING POPULATIONS

A. Background and model definition

The pattern-forming processes in the models investigated in
the previous sections are due to a gradual change in the under-
lying potential of the deterministic limiting dynamics. While
these potentials all have a single minimum at the beginning
of the sweep, a double-well regime is entered, subsequently
triggering the symmetry-breaking. It is this change of potential
that brings about the defect formation. In this section, we will
consider a different pattern-forming mechanism, and we focus
on models in which the external parameters remain fixed in
the symmetry-broken phase, g > g5, i.e., when the limiting
deterministic dynamics has multiple stable fixed points. In
the model discussed in this section, the symmetry-breaking
is instead triggered by a gradually decreasing noise ampli-
tude, originating from persistent growth of the population.
Specifically, we will consider an exponential growth process
of the overall population size, N(t), leading to a decreasing
amplitude of the resulting demographic fluctuations, which
scale as N~!/2, At the beginning of the dynamics, when the
population is small, fluctuations will be large, hence masking
the double-well structure of the deterministic dynamics. The
system remains in a disordered state. As the population grows
and fluctuations become smaller, the deterministic drift will
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become increasingly relevant. When the noise amplitude is
of the same order as the separation of the deterministic fixed
points finally, the dynamics locally (i.e., in each lattice site)
choose one of the two equilibrium fixed points, and local
population numbers fluctuate about these symmetry-broken
equilibria.

Specifically, we will consider the model of opinion dynam-
ics, defined in Eq. (4) in Sec. III, where g is now constant in
time. The growth dynamics is introduced by two additional
reactions,

Ts e(ne + Lmglng,ne) = %Nz,
i (46)
To.e(ng,mg + 1ng,me) = ENIZ,
where N, = n, + my is the total population in lattice site ¢,
and where p is the growth rate. We have written n, for the
number of up-spins in lattice site £, and m, for the number of
down-spins. At any one time, one has Ny = n, 4+ m,. We note
that the offspring created are randomly assigned to either type
of individual (up- and down-spins). Making a deterministic
approximation, we find

d N,
o {no) = %{Dmﬁ" +ad®[g — ()] + 1),
(47)
d N,
< ) = =T DA +agr (s~ (93] - ),
where
(Ne(t)) = NoeH, (48)

and where we have written ¢;°(t) = (n¢(t) — mg(t))/(Ne(2)).
This order-parameter field in turn follows the deterministic
dynamics,

$° = DAG® + ad[g — (6°)] — nd®. (49

The spatially homogeneous fixed points of this dynamics are
given by ¢* = £,/g — 1 /a. In our simulations, we study the
stochastic dynamics for different values of the growth rate, .
To keep the deterministic fixed points at a fixed location, we
adjust the value of g such that g — uw/a = 0.5 in all simulation
runs.

B. Simulation results

The dynamics of the stochastic model are illustrated in
Fig. 7. Figure 7(a) shows the particle numbers, n, and my, at
a single lattice site. As seen in the figure, they grow expo-
nentially. At the beginning of the dynamics, the population is
small, and so fluctuations are large. The noise settles down
during the later parts, and in this particular run the population
of up-spins outgrows the population of down-spins. This is
seen in Fig. 7(b). The order parameter ¢y = (ny — my)/ Ny is
subject to large fluctuations at the beginning. The amplitude
of these fluctuations is sufficiently large to make the attractors
of the deterministic dynamics largely irrelevant initially. In the
later stages the noise is smaller, and the run of the stochastic
dynamics shown in the figure approaches values near the
positive fixed point of the deterministic dynamics.
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FIG. 7. (Color online) (a) Number of up-spins and down-spins in
a growing population at a fixed lattice site in the model of opinion
dynamics. (b) Order parameter, ¢,(¢). Data are from a single run with
model parameters u = 0.01, a =0.25, g — u/a = 0.5, D = 0.05,
Ny =4, and L = 200.

Examples of the resulting patterns in the spatial system are
shown in Fig. 8. As in the previous examples, the typical size
of the resulting domains depends on the quench rate. For fast
quenches, fine structures with a large number of defects are
obtained, while larger domains emerge in slow quenches. We
stress again that these patterns were generated at a constant
control parameter. The role of the quench rate here is taken by
the growth rate, u, i.e., the rate with which the noise amplitude
is reduced over time. The number of zero crossings of the
order-parameter field is counted at the end of the simulation
(t = 10/p). No threshold is applied when counting zeros of
the field as the defects are well formed at the end of the
simulation; as seen in Fig. 8. Fitting the number of zeros as a
function of the growth rate to a power law gives an exponent
of approximately 0.23; see Fig. 9. While this is close to the
KZ prediction for systems in the class of the Ginzburg-Landau
equation, we have no physical justification for why the KZ
theory should apply here. It is clear, however, that the size of
the domains that are formed depends on the growth rate, ©. We

1000

FIG. 8. (Color online) Spatiotemporal dynamics of the order
parameter, ¢,(t), for the model of opinion dynamics with growing
populations in each lattice site. Light shading indicates high values of
¢.(t), dark shading indicates low values. Panel (a) shows data from
a single simulation run at u = 0.10, panel (b) is for u = 0.01. The
remaining parameters are as in Fig. 7.
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FIG. 9. Number of zeros of the order-parameter field atr = 10/u
in the model of opinion dynamics with growing populations. Symbols
show data from numerical simulations, averaged over 100 samples.
Error bars indicate the resulting standard deviation. Model parameters
are as in Fig. 7. The solid line is a least-squares fit to a power law,
resulting in an exponent of 0.23.

speculate that this may have implications for pattern-forming
processes, for example in growing embryos or indeed in other
systems in evolutionary dynamics with exponentially growing
populations [58,59].

VII. CONCLUSIONS

In this paper, we have extended the picture of pattern
formation in individual-based models to include systems with
time-dependent parameters. Similar to what is known as the
Kibble-Zurek mechanism, the length scale of the resulting
patterns depends on the rate with which the system is swept
across its symmetry-breaking transition. While most existing
studies of such phenomena are based on systems to which
external noise is added to partial differential equations with
time-dependent parameters, we focus here on intrinsic noise,
originating from the discrete dynamics at the microscopic
level. Thus, while the resulting phenomenology is similar
to what is known in condensed matter systems, the source
of the noise is different from that in existing models. Where
possible, we make use of linear-noise approximations to derive
analytical approximations for the characteristic length scale of
spatial structures and for the density of defects resulting from
the finite-time quenches.

Our analysis demonstrates that the picture of defect forma-
tion in systems with time-varying parameters is applicable
in a number of different model systems. In particular, we
have looked at a simple model of opinion dynamics, designed
to reduce to the well-known Ginzburg-Landau equation in
the linear-noise limit. Our second exemplar is a model of
selection-mutation dynamics in the context of evolutionary
game theory. The time-varying element here is the payoff
structure of the underpinning game, which gradually evolves
from a coexistence game to a coordination game. Our third
example is a model of decision making in biology, describing
two fate-determining chemical substances with mutual inhibi-
tion, and a time-dependent interaction coefficient, driving the
system from an undifferentiated to a differentiated state. In

062104-11



PETER ASHCROFT AND TOBIAS GALLA

all of these models, fast quenches lead to small-scale patterns
with a large number of defects separating domains. Slower
quenches, on the other hand, generate large domains, with
relatively few defects. The characteristic length scale of these
patterns can be approximated successfully in all cases.

In our final example, we have considered a separate,
noise-driven mechanism of pattern formation. In this model
we consider a growing population, so that the magnitude of
demographic fluctuations decreases with time. While the large
amplitude of the noise masks the underlying deterministic drift
in the initial phases of the dynamics, the system is driven
towards the deterministic attractors as the noise is reduced.
Our simulations demonstrate that the size of domains in which
the same attractor is chosen scales with the growth rate of
the population. For fast growth we find small domain sizes;
for slow growth there is sufficient time for information to
travel through the system and for different spatial locations to
coordinate on the same attractor. As a result, only relatively
few defects emerge.

In summary, our analysis shows that the time scales on
which model parameters such as reaction rates or population
sizes change in individual-based systems may crucially affect
the spatial structures that these systems generate. This is a
combined effect of an underlying symmetry-breaking, delayed
bifurcation dynamics induced by time-varying model param-
eters, and intrinsic noise triggering the symmetry breaking.
While we have focused here on a set of relatively stylized
models, we expect the basic phenomenology to be relevant
in a variety of biological systems subject to external time-
dependent signals and to internal fluctuations. Our work makes
a connection with what has been known about condensed
matter systems swept across symmetry-breaking transitions.
We show how existing tools, combined with a linear-noise
approximation, can be used to predict the properties of patterns
generated by individual-based systems with time-varying
parameters.
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APPENDIX A: FURTHER DETAILS OF THE
LINEAR-NOISE APPROXIMATION FOR THE MODEL
OF EVOLUTIONARY DYNAMICS

In this appendix, we present further details of the system-
size expansion and the linear-noise approximation for the
model discussed in Sec. IV. To study the effects of fluctuations,
we follow the same process as in Sec. III and derive a
Fokker-Planck equation for the probability distribution of the
variables (£,¢), and from this an equivalent set of Langevin
equations. We find

A & na,e(t)
(Q) B ‘7(1)(([) * <7IB,E(t)>’
where J(¢) is the Jacobian of Egs. (25a) and (25b) to

be evaluated on the deterministic trajectory. Our approach
assumes that the dynamics operates near the symmetric

(AL)
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deterministic fixed point, and so we use ¥;° = x;° =1/2.
The quantities n4 ¢ and 1 ¢ are Gaussian noise variables, with
correlations across components of the form

(im0 () = B8 — 1)

where i,j€{A,B}. As we only consider nearest-neighbor
interactions, nonzero entries of B¢t) only occur when
|€ — ¢'| < 1. Using this, we can write

BED = bOs, o+ bV e,

(A2)

(A3)

where the matrices »©@ and bV are given by

1 1
O _ 1+2D -1 i (—D 0 )
-1+ 1+2D 0 -D

(A4)

For the Langevin equation (28) for the variable
A¢ = &; — &, the noise term satisfies n; = na¢ — np.¢, and
thus the correlator is found to be

Me@ne ")) = Mae@nae)) — naeOnpge))
— MeNae)) + (npe(Onpe)), (AS)

which gives Eq. (29). One can now take the spatial Fourier
transform with respect to the variable £ — ¢/, and find

1
(g (D71 (1)) = EM —t)[1+4D(1 —cosq)].  (A6)

APPENDIX B: FURTHER DETAILS OF THE
CALCULATION OF (¢?(¢)) FOR THE MODEL OF CELL
DECISION MAKING

In Sec. V we arrive at the Langevin equation (44), which
describes the evolution of the order parameter when linearized
about the ¢* = 0 fixed point, which represents the equal-
concentration fixed point ¥° = x;/° = ¥ *(g). The correlator
of the noise in the Langevin equation is given by Eq. (43).
Carrying out a Fourier transform of the Langevin equation
(with respect to the spatial variable, £) gives

¢y = —(Dg* + By [BY™ (1) — 11+ Big + V™27, (1),
(B1)
where the correlations of the Fourier components of the noise
are given by
~ ~ / ]
(g (1ilg (1)) = 5—0(t — 1)8(q + ")
x [48 + 8D(1 — cos @)Y *(ut). (B2)
From this, the structure factor is calculated as

48 +8D(1 —cosq)
S(q.1) = 2V

x e 2ADG*+BA=p)lt=28%y ['ds v (us)

t ’
< / dt’ w*(ut/)eZ[Dq2+/3(l—y)]t’+2/.‘52yf’dsx//*(;m)

fo

(B3)

and (¢ (t)) is defined by the integral of S(g,t) over the Fourier
variable q.
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