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Understanding if and how mutants reach fixation in populations is an important question in evolutionary
biology. We study the impact of population growth has on the success of mutants. To systematically understand
the effects of growth we decouple competition from reproduction; competition follows a birth—death process
and is governed by an evolutionary game, while growth is determined by an externally controlled branching
rate. In stochastic simulations we find non-monotonic behaviour of the fixation probability of mutants as the

speed of growth is varied; the right amount of growth can lead to a higher success rate. These results are
observed in both coordination and coexistence game scenarios, and we find that the ‘one-third law’ for
coordination games can break down in the presence of growth. We also propose a simplified description in
terms of stochastic differential equations to approximate the individual-based model.

1. Introduction

When and how mutants spread in wildtype populations is an
important question in population dynamics; answering it has implica-
tions in bacterial evolution, cancer initiation, viral dynamics and for the
understanding of social phenomena (Maddamsetti et al., 2015; Nowak,
2006; Altrock et al., 2015; Castellano and Fortunato, 2009). While the
behaviour of populations has traditionally been described mostly with
deterministic models (Hofbauer and Sigmund, 1998; Smith, 1982), it is
increasingly recognised that the fate of invading mutants can be
influenced by random genetic drift. Work from recent decades reflects
this shift in modelling, and much current research is concerned with
the properties of stochastic evolution in finite populations (Nowak,
2006; Traulsen and Hauert, 2009; Ewens, 2004; Goel and Richter-Dyn,
1974; Taylor et al., 2004; Bladon et al., 2010).

Mathematical models of stochastic evolution typically describe a
population of individuals who can each be of one of several types or
species. In the simplest scenario one considers the spread of mutant
individuals in a wildtype population. Often the interactions between
species follow a birth—death process; individuals of one type may
generate offspring at the expense of other individuals who are removed
from the population, such that the total population size is conserved.
These events occur stochastically and their rates are determined by the
relative reproductive fitnesses of the different species; these fitnesses in
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turn depend on the composition of the population (Nowak, 2006;
Traulsen and Hauert, 2009). Evolutionary game theory is a commonly-
used framework for describing these frequency-dependent dynamics.
Fixation probabilities and mean fixation times can be computed for
these stylised models using techniques from the theory of stochastic
processes (Gardiner, 2009; van Kampen, 2007; Ewens, 2004; Altrock
and Traulsen, 2009; Antal and Scheuring, 2006).

More recently, work has also focused on models with populations of
dynamic size. Melbinger et al. have investigated the impact that
demography has on the spread of cooperation in the prisoners dilemma
game (Melbinger et al.,, 2010; Cremer et al., 2011, 2012). Other
evolutionary game formats have also been studied in populations of
time-dependent size (Novak et al., 2013; Chotibut and Nelson, 2015;
Huang et al., 2015; Li et al., 2015; Constable et al., 2016). In these
models growth is limited by an overall carrying capacity. The effect of
population growth has also been considered in host—parasite interac-
tions (Papkou et al., 2016), and in spin systems (Morris and Rogers,
2014). Other work specifically focuses on range expansions in space
(Hallatschek et al., 2007).

In such models that combine selection and growth, an interesting
interplay between the underlying deterministic dynamics and intrinsic
noise is to be expected. For example, consider a scenario where the
deterministic flow has a stable fixed point for non-zero numbers of both
types of individual. For infinite populations noise can be neglected, and
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Fig. 1. Stochastic trajectories of a single mutant in a growing population subject to
coexistence-game dynamics. Trajectory colours indicate the outcome of extinction,
fixation, or indefinite coexistence. Background arrows are the deterministic flow field,
as described in Section 3. Data shown is for selection strength 3=0.1, payoff matrix (15)
with fixed point x*=0.8, initial population size Np=100, and power-law population
growth with exponent y=0.4

the deterministic flow leads to the indefinite coexistence of two species.
In finite populations, however, extinction of one of the two types can
and will occur as these phenomena are driven by the intrinsic noise. A
growing population presents an interesting intermediate case; if its
initial size is small, demographic stochasticity shapes the outcome in
the early phases (in populations of size N, intrinsic noise has an
amplitude of order N~'? relative to deterministic selection). As the
population grows the relative strength of the noise gradually reduces,
and in the latter stages deterministic flow dominates over random drift.
This can lead to outcomes of fixation or extinction, or indefinite
coexistence, as highlighted in Fig. 1. The speed of growth determines
how long intrinsic noise is relevant before the deterministic flow takes
over. The purpose of our work is to investigate this in more detail and
to characterise the outcome of evolution for different speeds of
population growth.

To address this issue we explicitly decouple the between-species
interactions — birth—death dynamics in the form of a two-player two-
strategy evolutionary game — from the reproduction dynamics leading
to population growth. We consider evolutionary scenarios described by
the well-known cases of the dominance, coordination, and coexistence
games (Traulsen and Hauert, 2009), as described in Section 2.1.
Growth in our model is governed by an externally-controlled per-
capita reproduction rate, I'(N, ), which may depend on the current
population size and/or have an explicit time dependence as described
in Section 2.2. This rate is not frequency-dependent, such that the
growth process itself does not favour any of the two species — selection
is controlled only by the between-species interactions. By varying the
growth law independently from the selection dynamics, we can system-
atically test the effect of population growth on the evolutionary
outcome. This is much harder to do in models in which growth and
selection are combined, as the growth law then ‘emerges’ from the
population itself and cannot easily be controlled externally.

2. Model definitions

We consider a well-mixed, growing population of discrete indivi-
duals. Each member of the population can be one of two types, A or B.
We will refer to species A as the ‘mutant’ type, and B as the ‘wildtype’.
The state of the population at any time can be described by the pair of
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variables (i,N). In our notation i(t) is the number of individuals of type
A (mutants), and N(t) is the total number of individuals in the
population at a given time t. The number of individuals of type B
(wildtypes) can be written as j(r) = N(¢) — i(t). Generally we are
interested in the fate of a single mutant in a population of wildtype
individuals. For the dynamics we consider two types of discrete events:
Competition between the species, and growth of the population.

2.1. Competition

Competition (or selection) in our model is governed by transitions
of the type (i, N) = (i + 1, N), i.e. replacement of an individual by
another of the opposite type without increasing the population size
through a birth—death process. We use the framework of evolutionary
game theory to describe these interactions (Nowak, 2006; Traulsen and
Hauert, 2009). When two individuals interact, the likelihood for one
type to succeed over the other is characterised by the individuals’
expected payoffs within the population. These are written as z,(i, N)
and 7y(i, N) respectively for members of the two types; their precise
form will be defined below. In our model the rates at which these
selection events happen are given by
%g (”A’ ”B)

i(N = i)

T =

(,N)= (+1,N): T}

(i, N)y=(i—-1,N): T y= (mg, my).

N 8\7tp, 1y (1)
This follows the lines, for example, of Bladon et al. (2010); Traulsen
and Hauert (2009). The detailed mechanics of these birth—death events
are governed by the competition kernel g(-, -). Generally, this kernel
will be an increasing function of the first argument, and decreasing in

the second. For our investigation we use the common choice

1
1 + expl — p(my — 7p)] '

8(my> 7g) @)
which is sometimes referred to as the ‘Fermi process’ (Traulsen and
Hauert, 2009; Bladon et al., 2010; Altrock and Traulsen, 2009). The
parameter # > 0 is the intensity of selection: For g = 0 evolution is
neutral with no selection bias in favour of either species, for non-zero
values of 8 the payoffs determine the direction of selection.

We focus on the case of frequency-dependent selection; the
expected payoffs of the two species depend on the current composition
of the population. As is often done in the existing literature (see e.g.
(Nowak, 2006)) we assume that z,(i, N) and zz(i, N) are determined by
the following payoff matrix and functions:

i—1 N-i

A B (i, N) = 4t N_lb,
A a b, P NY = N-i=1,
B ¢ d (i, N) = vt o 4 3)

The parameter a describes the payoff an individual of type A receives
from an interaction with another individual of type A. Parameter b is
the payoff to A when interacting with an individual of type B.
Parameters c¢ and d follow similarly.

For these interactions alone (i.e. without changes in population
size), the deterministic dynamics can be described by the so-called
replicator equation (Hofbauer and Sigmund, 1998). Writing
x(t) = (i(t)/N(t)) = (i(t))/N, where (-) represents an average over in-
finitely many realisations of the stochastic process, and assuming that
higher-order moments factorise (e.g. (i*) = (i)?), we have

)

Here g(7,, 7p) [g(@, 7,)] is the (effective) fitness of type A [B], where
7 (x) = xa + (1 — x)b and 7(x) = xc + (1 — x)d. The choice of the pay-
off matrix elements a, b, ¢, and d determines the shape of the selection
bias. Our analysis below focuses on several types of games, represent-
ing the different structures that can arise. These include cases in which
one species strictly dominates the other (Eq. (4) has no fixed points for

x=x(1 —x)g@, ) — (@, T)]-
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0 < x < 1), as well as cases that promote coexistence of the species
(stable internal fixed point) or lead to bistability (unstable internal
fixed point) in coordination games (Hofbauer and Sigmund, 1998).

2.2. Growth

Population growth occurs through transitions
i,N)=> (i+1,N+ 1) and (i, N) = (i, N+ 1). In the former case an
individual of type A (mutant) reproduces, in the latter an individual of
type B (wildtype) generates an offspring. These processes occur without
the removal of any existing member of the population, such that the
overall size of the population increases. They happen with rates

(i .N)— G+ 1, N+ 1):
(L,N) = G, N+ 1 =W -0Drw,o,

i = iF(N, 1),
5)

respectively. The per-capita growth rate, I'(N, 1), is assumed to be the
same for both species such that there is no selection in this sector of the
model.

We first consider the deterministic behaviour of the population size.

Writing N (t) = (N(2)), we find
dN
—=NTWN,1).
a w0 ©)
Therefore, we can use I'(N, r) as a mathematical device to generate
specific growth laws for the average population size. For example,
choosing I'(N, t) = a (const.) corresponds to exponential growth, or
I'(N, t) = r(1 — N/K) generates logistic growth with carrying capacity
K.

For the rest of the manuscript we study a population whose size
follows a power-law in time,

N(@) = Nyt @)
This is achieved by setting
14
I'(N,t) =~
o= ®)
or likewise
11y
I'(N,t) = y(%) .
N )]

We always assume that the dynamics is started at time ¢t=1 with an
initial size N(r = 1) = N,, and that the growth exponent y > 0. This
growth law captures a variety of behaviours: Choosing y = 0 corre-
sponds to a scenario with a constant population size, N(r) = N,. On the
other hand, choosing y = 1 results in linear growth over time. In the
region 0 < y < 1 (sub-linear), the population initially experiences rapid
growth, as is common when population densities are low. As the size
increases, the growth becomes suppressed (although the population
increases indefinitely). Our results below show that the choice of
power-law growth captures non-trivial behaviour; in particular we find
that a single mutant can be most successful at intermediate choices of
the growth exponent.

Power-law growth has been observed in tumour development
(Altrock et al., 2015), where surface area (Cappuccio et al., 2006) or
radii (Bra et al., 2003) grow linearly in time. Recently, Karev has
highlighted the ubiquity of power-law growth across many scales of
natural processes (Karev, 2014), including the sub-exponential growth
of replicators (nucleotides) (Szathm and Maynard Smithary, 1997).

This choice of growth law can also be motivated physically as
follows: Under simple birth—death dynamics the variance of the
number of mutants grows linearly in time (Redner, 2001). We can
expect that the number of mutants in different realisations of the
process will differ within a range proportional to the standard devia-
tion, growing as 2. Imposing additional population growth, with no
advantage to either species, effectively induces a growing boundary for
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this random-walk problem. The most interesting scenarios are to be
expected when the growth of the domain (i.e. the population size) and
the typical deviations from the mean of mutant numbers follow similar
laws. The boundaries of the domain are then ‘reachable’, so that
fixation and extinction may occur. On the other hand, intrinsic noise
does not dominate when the population is large so that arrival at either
of the boundaries may not necessarily be certain.

Finally, although the two representations of the per-capita growth
rate [Egs. (8) and (9)] result in the same dynamics, their interpreta-
tions are different. The explicit time-dependence of Eq. (8) suggests
external moderation of the growth rate, such as controlling nutrient
supply in an experiment. On the other hand, the appearance of the total
population size in Eq. (9) suggests some degree of self-moderation,
similar to logistic or Gompertzian growth.

3. Deterministic flow for 2x2 games in growing populations

The full model is stochastic and individual-based. A mathematical
description can be formed in terms of the master equation which
describes the behaviour of the probability, P, (7), to find the population
in state (i,N) at time t. It is given by

BN g P =T
- i = livkiy
+TinvBein — TinB
A A
+riinv-foivor — ivBN

B B
+rin- o1 — inEn-

(10

From this equation we can derive ordinary differential equations
(ODEs) for the time-evolution of the first moments, i = {(i(?)),
N = (N(t)). This follows standard steps as described, for example, in
van Kampen (2007); Gardiner (2009). The population size, N, follows
Eq. (6). The number of mutants, i, satisfies

d_i
dr

i(N -1)

i (8@, T) — (7, m)] + i T(N, ).

- an
We can show the fraction of mutants, x = {/N, follows the replicator
equation (4) by using Egs. (6), (11), and the quotient rule of
differentiation: = i/N — xN/N.

We can represent the deterministic dynamics in the (i, j)-plane,
where j = N — i is the number of wild-type individuals. We use Eq. (9)
to express I'in terms of N = i + j, and we arrive at closed expressions
for the evolution of 7 and j,

di P N 1y
1 Ly _ R — T 0
- = = , - s + = ,
a T+7 [g(my, mp) — g(7, 7)) ﬂ[i 4 )
- P 1y
dj tJ I R - N
— = ——|g(m@y, my) — g(@m,, mp)| + — .
a e 8@, 7)) — 8@, 7p)] K/(i +7 12)

We now consider these dynamics under different evolutionary game
scenarios.

In Figs. 2, 3, and 4we show the deterministic flow field (12) for
dominance, coordination, and coexistence games for different growth
exponents. We describe each figure in turn below. The dark-shaded
regions in these figures correspond to N < N, (with N, = 100); these
are situations which cannot be realised as the population starts at size
Ny and then increases. It is, however, illustrative to show the flow in
this region as well. The light-shaded regions indicate the region where
growth dominates over selection, i.e. i + > i —jI. The thick, solid
line indicates the deterministic trajectory of a single mutant in the
wildtype population.

Dominance game: Here the fitness of one species is strictly
higher than that of the other, irrespective of the composition of the
population. A payoff matrix which produces this dynamics is
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Fig. 3. Deterministic flow for the coordination game in a growing population, as given by
Eq. (12). Payoff matrix is given by Eq. (14) with x* = 0.2. Data shown is for # = 0.1 and
N = 100.
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for which one finds 7,(x) > 7;(x) for all x. Hence in this game (and in
the absence of noise) the mutants will always eventually prevail
G - 0).

The dominance of the mutants in this game is highlighted in Fig. 2.
There is, however, an initial period in which both species grow in
number. This is a consequence of our choice of growth law which has
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Fig. 4. Deterministic flow for the coexistence game in a growing population, as given by
Eq. (12). Payoff matrix is as in Eq. (15) with x* = 0.8. Data shown is for # = 0.1 and
N, = 100.

an initial phase of rapid expansion, such that reproduction events
dominate over selection in the early stages. The initial expansion is
greatest for large y, and the region in which growth dominates also
increases with y. When the population size is large, the dynamics are
very similar to the no-growth case as selection dominates over growth
for large N.

Coordination game: This scenario represents a case of bistabil-
ity, and can be conveniently represented by the payoff matrix

A B
A1 1-x*,

B x* 1 14

where 0 < x* < 1. An individual's payoff is maximal if it interacts with
another of its own type. If mutant numbers are low, it is likely that they
will have a low expected payoff and will be selected against. However, if
their numbers are large then they will have a higher payoff than the
wildtype and will be selected for. At some intermediate number there
will be a ‘tipping point’, where the direction of selection changes sign.
In the deterministic replicator dynamics (4) this unstable fixed point is
located at x*. The boundary states in which the mutant is extinct (x=0)
or fixated (x=1) are both stable.

The resulting flow fields for the coordination game in growing
populations is shown in Fig. 3. The two basins of attraction are
separated by the unstable fixed point line (we use x* = 0.2 in the
figure). As in the dominance game the number of individuals of both
types grow initially. However, when the population size is large enough
selection dominates over the growth, and the dynamics resembles the
no-growth scenario. This ultimately leads to the extinction of one
species. Under deterministic dynamics, the initial condition determines
which one of the two species ultimately prevails; in this case the single
mutant is destined to perish eventually.

Coexistence game: In a coexistence game the population is
driven towards a heterogeneous state in which both species are present.
An individual's payoff is maximised if it interacts with the other
species. These games can be conveniently parameterised as

A B
A 1 1+ x*
B 2—x* 1, (15)
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where 0 < x* < 1is a stable fixed point under replicator dynamics (4).
The boundary states in which the mutant is extinct (x=0) or fixated
(x=1) are both unstable.

The corresponding flow fields are shown in Fig. 4 for different
growth exponents and a fixed point of x* = 0.8. As before both species
grow provided their numbers are sufficiently low. Selection does always
act to maintain a heterogeneous population, however growth dom-
inates for a large proportion of the (i, j )-plane (for large y). Under such
deterministic dynamics no species would be lost from the system. This
outcome changes if intrinsic stochasticity is accounted for, however it
becomes increasingly difficult to escape from the stable fixed point as
the population size increases.

4. Stochastic population dynamics

We now turn to the outcome of the stochastic individual-based
model. We focus on the case in which one single mutant of type A is
initially present in the population of N, — 1 wildtypes. Intrinsic noise in
the birth—death dynamics then implies the possibility that this mutant
may go extinct, or take over the entire population. In populations of
constant size one of these two outcomes will inevitably occur. As we will
see below, this is not always the case when the population grows. Our
analysis focuses on the fixation probability of the mutant, which we
denote by ¢;. To obtain a systematic characterisation we investigate the
different types of games separately.

4.1. Dominance game

In the dominance game described by the payoff matrix in Eq. (13),
selection acts in favour of the mutant. Growth of the population
increases the strength of selection relative to the strength of the
intrinsic noise, reducing the probability that the mutant goes extinct.
This in turn leads to a fixation probability which increases mono-
tonically with the growth exponent y. We have verified this in
simulations but do not show the data here, as it is relatively
unspectacular.

Considering a mutant whose fitness is consistently lower than that
of the wildtype we find that the probability of fixation monotonically
decreases with the growth exponent. We do not investigate these trivial
results in more detail.

4.2. Coordination game

We now turn to the scenario of coordination games, as defined by
the payoff matrix in Eq. (14). The fixation probability of a single
mutant, ¢, in a population subject to power-law growth is shown in
Fig. 5. We consider multiple combinations of the growth exponent vy,
the selection strength 8, and the location of the unstable fixed point x*.
The data in Fig. 5 shows that growth can have a non-trivial effect on the
success of the mutant, provided that selection is sufficiently weak and
that the fixed point is not too far from the extinction state. The fixation
probability of the mutant is then highest at intermediate speeds of
growth.

An intuitive understanding of this behaviour can be obtained as
follows: In the initial phases of the dynamics the population is small,
and the effects of intrinsic noise dominate. Different realisations of the
stochastic process will lead to fractions of mutants spread across the
interval 0 < x < 1. Crucially, these occupy both the region to the left of
the unstable internal fixed point (x < x*), and the region to the right
(x > x*). With time the population grows, and so the underlying
deterministic flow becomes stronger relative to the intrinsic noise.
Trajectories to the left of the fixed point will experience an increasing
pull towards extinction of the mutant, whereas those to the right of x*
lead to its fixation.

For small growth exponents y, the population size remains close to
Np for a long time. Thus the effects of selection do not set in the early
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Fig. 5. Probability for a single mutant to reach fixation in coordination games. Symbols
are data from 10° simulations of the stochastic model, run until the mutant is extinct or
has reached fixation. Lines are guides to the eye. (a) The location of the fixed point is
held fixed at x* = 0.2, and the selection strength is varied between curves. (b) The
selection strength is fixed at # = 0.1, and different curves correspond to locations of the
unstable fixed point of the replicator dynamics. For all simulations the initial size of the
population at t=1 is N = 100; the payoff matrix is as in Eq. (14).

stages, and the mutant number can cross back and forth over the fixed
point until one of the absorbing boundaries is reached. The fixation
probability is essentially that of a coordination game in a population of
constant and relatively small size.

At moderate y the population undergoes an initial phase of
relatively free exploration, populating the basins on both sides of the
fixed point. As the population grows the deterministic pull sets in.
Realisations that are to the right of the fixed point, and which could
normally have diffused back and led to extinction of the mutant are
prevented from doing so (statistically) and reach fixation instead (x=1).
Similarly realisations to the left of x*, which may ultimately have
crossed the fixed point again and lead to fixation in the absence of
growth, now lead to extinction of the mutant (x=0) due to the onset of
deterministic pull. If the fixed point is close to the extinction state the
former effects outweighs the latter. This results in an increased net
probability for the mutant to reach fixation rather than extinction.

At large values of the growth exponent, the deterministic pull sets in
very quickly. The period of initial (nearly) free drift is short, and the
mutants do not have time to expand and populate the basin to the right
of the fixed point. Broadly speaking the number of mutants remains
small, and they quickly experience an increasing pull towards extinc-
tion. The chances for the mutant to reach fixation are reduced. In the
extreme case of very quick growth (y > 1) the system becomes
effectively deterministic immediately, hence ¢, ~ 0. This is confirmed
in Fig. 5.

We next briefly discuss the effects of the selection strength, 5. As seen in
Fig. 5(a), increasing the selection strength moves the maximum in fixation
probability towards lower values of the growth exponent y. This appears
natural as increased selection indicates stronger deterministic flow at any
given size of the population. If selection is too strong the mutants are
unlikely to overcome the initial barrier of adverse selection, even for
moderate growth exponents. We then find monotonically decreasing
dependence of fixation probability on the growth exponent y.
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The above interpretation also suggests that the location of the
internal fixed point might be relevant. As described, the initial increase
in fixation probability with the growth exponent is due to the gradual
‘trapping’ of realisations by the increasing deterministic pull. An
increased fixation probability is thus only to be expected if the basin
to the right of x* is sufficiently large. This is confirmed in Fig. 5(b),
where we demonstrate that the maximum in ¢; as a function of the
growth exponent y is only present if x* is sufficiently small. If the fixed
point is too far from the initial condition x = 1/N, only very few runs
are able to cross the barrier before the increasing deterministic pull
confines them to the extinction basin. Thus, when x* is large, we find
monotonically decreasing fixation probability as growth increases.

This interplay between ¢; and x* is reminiscent of the so-called
‘one-third law’ in evolutionary game theory, which is valid for popula-
tions of fixed finite size N interacting in a coordination game. The
fixation probability of a single invading mutant in the limit of weak, but
non-zero selection is then higher than that under neutral selection
(¢ = 1/N), if x* < 1/3 (Nowak et al., 2004; Ohtsuki et al., 2007). We
next investigate the impact of growth on this rule.

First, it is useful to re-formulate the one-third law for coordination
games in a constant-size population in the following way: At small
selection strengths f, the fixation probability ¢; is an increasing
function of B if x* < 1/3, and it is a decreasing function otherwise.
Given that ¢, — 0 in the limit # — co for coordination games, we expect
a maximum in the function ¢ = ¢(f) when x* < 1/3, and a mono-
tonically decreasing function if x* > 1/3. This is verified by the dashed
lines in Fig. 6, which show the analytical solution for the fixation
probability in a population of fixed size N=100. This solution is
obtained by standard methods (Nowak, 2006; Traulsen and Hauert,
2009). For x* = 1/3, the fixation probability is equal to the neutral
result until S is sufficiently large.

Simulations of a growing population reveal that the one-third law
can break down when the size of the population is not fixed. The
symbols in Fig. 6 are simulation data for ¢, in a population with growth
exponent y =0.5. In the limit of weak-selection (f — 0) we find
¢, = 1/N,, which is the result one obtains for neutral selection in a
fixed-size population. The fixation probability of the mutant can
increase with 8, even when x* > 1/3. This is highlighted in the inset
of Fig. 6, where we vary x* more finely.

4.3. Coexistence game

We now turn to the case of coexistence games in populations

o
0.04} 00127 . : 1o
< 0.010 -ﬁ}.‘. .......
- 0.008 T
? 0.03} 0006} .-.:A |
— R Hea
= 0.004 . Tes |
< 107 107° 102 107!
< o
S 002} L
o ()
= ,(poo
g 0.01 MMM%\A
A= N
S8 AAA
0.00 SRORKOOIE

1072 107! 10"

Selection strength,

107 1073

Fig. 6. Breakdown of the one-third law of coordination games in a growing population.
Symbols show simulation results for the probability of a single mutant to reach fixation.
Data is obtained from 10° simulations of the stochastic model, run until extinction or
fixation of the mutant. Dashed lines are the fixation probabilities in a population of fixed
size N =Ny (x* =0, 1/9, 2/9, 3/9, 4/9 from top to bottom), computed analytically by
standard methods (Nowak, 2006; Traulsen and Hauert, 2009). Horizontal dotted line is
the fixation probability ¢ = 1/N, under neutral selection in a population of constant size
Np. In the inset we vary x* more finely, with values 9/27 (triangles), 10/27 (circles), and
11/27 (squares). For all simulations the initial population at =1 is N, = 100, the growth
exponent is y = 0.5, and the payoff matrix is given by Eq. (14).
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Fig. 7. Stochastic dynamics of a single mutant in the coexistence game. Solid lines show
the probability to have reached either extinction or fixation by time t (left axis; y = 0, 0.1,
0.3, 0.5, 0.7 from top to bottom). Symbols show the root-mean-square of the distance
from the stable fixed point x* (right axis; see text for details). Data is from 10*
simulations of the stochastic model, run until a maximum time ¢=20,000. For all
simulations the initial size of the population at t=1 is Ny = 100, selection strength is
$ = 0.1, the stable fixed point is located at x* = 0.8, and the payoff matrix is as in Eq.
(15).

subject to power-law growth. In this situation the deterministic
replicator dynamics (4) has a stable internal fixed point, indicating
species coexistence. However, in finite populations of constant size an
invading mutant will either go extinct or reach fixation due to the
intrinsic stochasticity. As in the case of the coordination game, the
probability and mean time it takes to reach fixation or extinction in a
constant-size population can be computed analytically from the back-
ward master equation (Nowak, 2006; Traulsen and Hauert, 2009).

We find that the situation changes when the population is allowed
to grow. With time the deterministic pull towards the internal stable
state becomes stronger relative to random drift, and as a consequence
fast-growing populations may never reach absorption. This can be seen
in Fig. 1.

The simulation data shown as solid lines in Fig. 7demonstrate this.
The lines indicate the fraction of simulation runs in which a single
mutant has either reached fixation or gone extinct by time t, i.e. the
cumulative distribution of absorption times (CDF). This quantity
reaches the value of one for y = 0 (constant population size), indicating
that all runs reach either x=0 (extinction of the mutant) or x=1
(fixation) eventually. The same is found for small, but positive values
of the growth exponent y — all samples reach an absorbing state
eventually. For faster-growing populations we find a finite fraction of
samples in which the mutant neither reaches fixation nor goes extinct.
Our simulations naturally need to be stopped at some finite time, but as
seen from the data in Fig. 7 the cumulative distribution of absorption
times reaches a constant value (less than one) at finite times, with no
further increase observed in the later parts of the simulations. This
confirms that the time horizon of our simulations is sufficiently long,
and we can reasonably assume that no further extinction or fixation
events would occur if the simulations were continued to later times.

To explain why coexistence can prevail indefinitely in growing
populations, we focus on the root-mean-square distance from the
stable fixed point x*. For each simulation run we record the fraction of
mutants, x(r) = i(r)/N(t) as a function of time, and then compute

RMS(1) = \(Ix(0) — x*T), .

where (-), represents the average over ‘active’ simulation runs, i.e. runs
that have not reached fixation or extinction before time t. This quantity
is a measure of how close, on average, the fraction of mutants is to the
deterministic value x*. It is plotted as symbols in Fig. 7. As can be seen,
the RMS distance generally decreases with time; the population size is
increasing such that the impact of intrinsic fluctuations decreases and
deterministic effects dominate. This confines the mutant fraction to the
region around x*. The escape probability is related to the width of the

(16)
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Fig. 8. Stacked area chart for the probability of the different outcomes of a single mutant
in the coexistence game. The mutant may either reach fixation, go extinct, or the two
species coexist until the end of the simulation. Data is from 10* simulations run until a
maximum time of t=20,000. The initial population at t=1 is N, = 100, selection strength
is = 0.1, the stable fixed point is located at x* = 0.8, and the payoff matrix is as in Eq.
(15). The vertical axis has been truncated.

distribution (of i/N) about x*. As this width decreases, so does the
probability of escape. The effect is stronger for faster-growing popula-
tions.

In the stacked area chart 8 we illustrate the outcome of introducing
a single mutant into a wildtype population for different choices of the
growth exponents y. For each realisation there are three possible
outcomes: the initial mutant goes extinct, reaches fixation, or coexists
with the wildtype until the end of the simulation (by extrapolation we
then assume coexistence will continue indefinitely). The figure reveals
several characteristic features: the probability for the mutant to go
extinct monotonically decreases as the growth exponent y is increased.
This is intuitively easy to understand, quicker growth implies that the
deterministic pull of the coexistence game becomes relevant already in
the initial stages of the simulation. This drives the system towards the
coexistence point, and away from extinction. This also leads to an
increased probability for the mutant to reach fixation at intermediate
growth exponents, see Fig. 8. The system is driven to the coexistence
point, but growth is not quick enough to eliminate the effects of
random drift immediately. Mutant numbers fluctuate around the
coexistence point, and the population can then be driven to fixation
at x=1 by intrinsic noise.

When vy sufficiently large (fast growth), the latter step is inhibited.
The fraction of mutants will settle around x* as described above, and
the mutant type will be unable to overcome the selection barrier to
reach fixation. An increasing fraction of realisations is found to remain
near the coexistence point indefinitely, and neither fixation nor
extinction of the invading mutant takes place.

Taken altogether these effects result in the behaviour of the fixation
probability shown in Fig. 9. Strong selection helps the mutant avoid
extinction, but combined with fast growth the deterministic pull
towards x* cannot be overcome and fixation cannot be reached. With
some growth the mutant has a higher chance of escaping extinction,
and these combined effects lead to a maximum in the fixation
probability ¢;. Provided the fixed point x* is sufficiently close to the
boundary at x=1 we find maximal fixation probability at intermediate
growth rates y. This effect is stronger when the fixed point is close to
x=1, and can be absent if the barrier between the coexistence point and
fixation is too large (i.e. when x* is too far to the left).

5. Conclusions

In summary, we have investigated the effects of population growth
on the outcome of stochastic evolutionary games. While the stochastic
dynamics of 2x2 evolutionary games in constant-size populations is
largely understood, we find new features in growing populations. To
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Fig. 9. Probability for a single mutant to reach fixation in coexistence games. Symbols
are data from 10* simulations of the stochastic model, run until time t=20,000. Lines are
guides to the eye. (a) The location of fixed point is held fixed at x* = 0.8, and the
selection strength is varied between curves. (b) The selection strength is fixed at g = 0.1,
and different curves correspond to locations of the stable fixed point. The initial size of
the population at t=1 is N, = 100; the payoff matrix is as in Eq. (15).

systematically study these effects we have disentangled growth and
selection, and assume that both species in the population grow at the
same (per capita) rate. We impose an external time-dependence on
these rates; while this can be interpreted as an experimental protocol in
which the availability of nutrients is varied in time, our main objective
is to generate specific growth laws of the population. We focus on the
case of power-law growth, N (r) = Ny’, and control the growth expo-
nent y.

The most interesting behaviour arises in coordination and coex-
istence games; we study scenarios in which a single mutant tries to
invade a wildtype population. We find that intermediate growth rates
can lead to the maximum chance of success of the mutant; if growth is
too fast or too slow (or non-existent), the ability for the mutant to
invade is compromised. This effect is present in both classes of games;
the origin of this effect is different in the two cases, though.

In coordination games, the mutant will either become extinct or
reach fixation eventually. Population growth increases the effect of
selection over time relative to intrinsic noise. In the later stages of the
process this prevents the mutant number from crossing the barrier
separating the basins of attraction of extinction and fixation, and shifts
the balance between the two outcomes. These effects also lead to the
breakdown of the one-third law of coordination games.

In coexistence games, a growing population can promote indefinite
coexistence of the mutant and wildtype individuals. By effectively
decreasing the magnitude of intrinsic fluctuations, population growth
confines the fraction of mutants to the region near the deterministic
coexistence point. If the growth rate is moderate, selection is strong
enough initially to prevent extinction but leaves the population size
small enough to be able to eventually escape from coexistence to
fixation of the mutant.

In the appendix we propose an approximation of the dynamics in
terms of a single stochastic differential equation. Here the amplitude of
multiplicative noise decreases gradually in time, representing the
increasing population size. This equation is formulated ad-hoc and
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Fig. 10. Results from numerical integration of the SDE (17). Simulations are started at x=0.01 at time ¢=1 to represent the case in which a single mutant is placed in a population of
initial size Ny = 100. (a) Probability for the mutant to fixate in coordination games. This is the analog of Fig. 5(a). (b) Probabilities of the different outcomes at the end of a simulation in

coexistence games. This is the analog of Fig. 8. Timestep of the numerical integration is Ar = 0.001. Dotted lines are analogous results from the individual-based model.

we make no claims of analytical rigour. However, we find good
quantitative agreement with direct simulations. This framework allows
efficient computation when population sizes are large, and may lead to
further analytical progress.

Introducing a variable population size has revealed interesting
effects in many evolutionary models (Melbinger et al., 2010;
Constable et al., 2016; Chotibut and Nelson, 2015). We have continued
this line of work and systematically investigated the fate of mutants in a
growing population. In biological settings populations grow — this is
often their primary function. Adding growth to well-established evolu-
tionary models thus helps to bridge the gap between experimental work
on growing and evolving populations, and theoretical understanding.
One next step might be developing models in which the growth-law
emerges dynamically, for example through environmental processes
acting on the population. If such an emergent law matches our
externally-imposed growth dynamics, then we expect our results to
hold, at least qualitatively.

On a general level, our work contributes to the increasing literature
that tries to understand the interplay between deterministic selection
and intrinsic stochasticity. Varying the intensity of noise by introducing
population growth is a novel way to approach this task.

Appendix

The dynamics of large but finite populations can often be described
by stochastic differential equations (SDE). These resulting SDEs can
formally be derived using a Kramers—Moyal or system-size expansion,
and a well-defined formalism is available to do this van Kampen
(2007); Gardiner (2009). For non-constant populations this SDE
approach has been used, for example, in Melbinger et al. (2010);
Cremer et al.,, (2011, 2012); Chotibut and Nelson (2015). Such a
procedure can have numerous benefits: the approximation of an
individual-based process by an SDE can lead to significant computa-
tional speed-ups (Traulsen et al., 2012), which is especially important
in our scenario where the growing population can quickly reach very
large numbers.

In our model there are two degrees of freedom, which we write as
x(r) = i(r)/N(t) and N(t). Our aim here is not to rigorously derive SDEs
for x and N (such a derivation is beyond the scope of this article), but to
test the viability of a simpler phenomenological approach which has a
significantly lower computational cost. Specifically, we simulate the
process

X =x(1 —x)lg®m,, ) — g7, m)]

. \/ x(1 = 0)g(@,, T) + g(@, T

n(),

N(1) 17)
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where N (1) = Nyt” is the deterministic system size, and where 7(7) is
Gaussian white noise of unit amplitude. This equation is motivated by
the well-known outcome for the diffusion approximation in popula-
tions of constant size N, as derived for example in Traulsen et al.
(2005). Ignoring the noise term, we recover the replicator equation (4).

In Fig. 10we show data from a simple numerical integration of Eq.
(17) (Euler—-Maruyama scheme with constant timestep). In our
approach we terminate simulations once the variable x leaves the
interval (0, 1), and identify these realisations as fixated (x > 1) or
extinct (x < 0). Despite the ad-hoc nature of Eq. (17), the data in
Fig. 10 demonstrates that this approach is sufficient to capture the
main features: Simulations of the coordination game [Fig. 10(a); to be
compared with Fig. 5(a)] and the coexistence game [Fig. 10(b); to be
compared with Fig. 8] show good agreement with individual-based
simulations, even at the quantitative level. We attribute small quanti-
tative deviations to the approximations made in formulating the SDE,
to the discretisation used in integrating it, and to artifacts in the
numerical treatment of the multiplicative noise and absorbing bound-
aries.

The natural next step would be to attempt to analytically determine
the fixation probabilities directly from the SDE (17). While standard
techniques are available for autonomous SDEs (i.e., those without
external time dependence) (Gardiner, 2009; Hanson, 2007), the
problem is more intricate in our case due to the explicit time-
dependence of the noise amplitude. While a backward Fokker—Planck
equation can still be formulated (and solved numerically), an analytical
characterisation of fixation times remains an open challenge.
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